Electronic Supplementary Information

Strongly-bound Wannier-Mott Exciton in Pristine (LaO)MnAs and Origin of Ferrimagnetism in F-doped (LaO)MnAs

Jessie Manopo^{a, b}, Tio Prince Lubis^{a, b}, Muhammad Arief Mustajab Enha Maryono^b, Pepen Arifin^b, Toto Winata^b, Rena Widita^c, and Yudi Darma^{a, b}†

^aQuantum Semiconductor and Devices Lab., Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10 Bandung, 40132, Indonesia.

^bPhysics of Electronic Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10 Bandung, 40132, Indonesia.

^c Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10 Bandung, 40132, Indonesia

	α	β	p (Å)	q (Å)	r (Å)	s (Å)	γ	Illustration
pristine	106.962	110.74	2.5592	2.5592	2.5592	2.5592	106.962	• •
6.25%	106.54	110.815	2.5612	2.5612	2.5696	2.5696	107.088	
	106.957	110.702	2.5559	2.5586	2.5641	2.5652	106.514	
12.50%	106.53	111.124	2.5618	2.5627	2.5627	2.5618	106.53	p v
	105.787	111.344	2.5594	2.5594	2.5594	2.5594	105.787	$r/\sum \beta$
25%	106.935	111.362	2.5445	2.5445	2.5850	2.5850	104.544 (Mn2)	
	106.444	111.369	2.5526	2.5526	2.5767	2.5767	105.024 (Mn1)	

Table S1. Bond lengths and angles of $MnAs_4$ tetrahedra in pristine and doped (LaO)MnAs

Figure S1. Calculated projected density of states for (a) Mn1 and (b) Mn2 d orbital of pristine (LaO)MnAs, (c) Mn1 and (d) Mn2 d orbital of (LaO_{0.875}F_{0.125}), (e) Mn1 and (f) Mn2 d orbital of (LaO_{0.75}F_{0.25})MnAs.

Figure S2. Calculated spin charge density of (MnAs) layer of $(LaO_{0.75}F_{0.25})MnAs$ with isosurface level of 0.003 eV/Å, where yellow and blue isosurfaces denote spin up and down respectively.

Figure S3. Calculated (a) absorption coefficient, (b) refractive index, (c) extinction coefficient, and (d) optical conductivity of pristine (LaO)MnAs, $(LaO_{0.875}F_{0.125})MnAs$, and $(LaO_{0.75}F_{0.25})MnAs$.

Figure S4. Momentum matrix elements of (a) pristine (LaO)MnAs, (b) $(LaO_{0.875}F_{0.125})MnAs$, (c) and $(LaO_{0.75}F_{0.25})MnAs$.