Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Effect of acid treatment on boosting the photoelectrochemical performance of doped and codoped α-Fe₂O₃ photoanodes Yujie Wang*, Jinlong Liu, Jie Xu, Xiaobin Hao *Address:* School of Materials and Chemical Engineering, Chuzhou University,

Chuzhou, Anhui 239000, China

Email: wangyj120@163.com

Fig. S1. The plots of the capacity current differences (at 0 V vs. Hg/HgO) against scan rates, where the liner slope equals twice the C_{dl} .

Fig. S2. Photocurrent density vs. potential (J-V) curves of the (a) pristine, (b) Ge_{in} , (c) Ti_{in} , (d) Sn_{in} and (e) Sn/Ti_{in} photoanodes before and after HCl treatments for 1 h.

Fig. S3. Photocurrent density vs. potential (J-V) curves of the (a) Ge, (b) Pt, (c) Ti and (d) Sn electrodes before and after HCl treatments for 1 h and 2 h.

Fig. S4. Transient photocurrents of the (a) Ti, (b) TiGe, (c) TiPt and (d) TiSn photoanodes measured at 0.84 $V_{\text{RHE}}.$

Fig. S5. Photocurrent density vs. potential (J-V) curves of the (a) Ge, (b) Pt, (c) Ti and (d) Sn photoanodes before and after HCl treatments for 1 h and 2 h measured in electrolyte with H_2O_2 as the hole trapping agent. Calculated charge injection efficiencies (η_{inj}) of the (e) Ge, (f) Pt, (g) Ti and (h) Sn photoanodes before and after HCl treatments for 1 h and 2 h.

Fig. S6. Equivalent circuit for fitting the charge resistances and capacities in the α -Fe₂O₃ photoanode.

Fig. S7. Trap capacities (C_{trap}) of the (a) Ge, (b) Pt, (c) Ti and (d) Sn photoanodes before and after HCl treatments for 1 h and 2 h. Charge transfer resistances ($R_{ct,trap}$) of the (e) Ge, (f) Pt, (g) Ti and (h) Sn photoanodes before and after HCl treatments for 1 h and 2 h.