SUPPORTING INFORMATION

A library of new organofunctional silanes obtained by thiol-(meth)acrylate Michael addition reaction

Agnieszka Przybylska^a, Anna Szymańska^{*b} and Hieronim Maciejewski^{a,b}

^aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614
Poznań, Poland
^bPoznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań, Poland
*E-mail: anna.szymanska@ppnt.poznan.pl

Table of Contents

За	
Product characterization	4
NMR spectra	4
FT-IR spectrum	6
3b	6
Product characterization	6
NMR spectra	7
FT-IR spectrum	8
3c	9
Product characterization	9
NMR spectra	9
FT-IR spectrum	
3d	
Product characterization	
NMR spectra	
FT-IR spectrum	
3e	
Product characterization	
NMR spectra	
FT-IR spectrum	

3f	16
Product characterization	16
NMR spectra	
FT-IR spectrum	
3g	19
Product characterization	19
NMR spectra	19
FT-IR spectrum	21
3h	21
Product characterization	21
NMR spectra	22
FT-IR spectrum	23
3i	24
Product characterization	24
NMR spectra	24
FT-IR spectrum	26
3j	26
Product characterization	26
NMR spectra	27
FT-IR spectrum	28
3k	29
Product characterization	29
NMR spectra	29
FT-IR spectrum	
31	
Product characterization	
NMR spectra	
FT-IR spectrum	
3m	
Product characterization	
NMR spectra	
FT-IR spectrum	
3n	
Product characterization	
NMR spectra	
FT-IR spectrum	
30	

Product characterization	
NMR spectra	
FT-IR spectrum	
Table S1. Comparison of conditions of reactions and yields for the obtained alked the literature data	oxysilanes with 41

Table S2. Other examples (conditions and yields) of alkoxysilanes obtained from 3-mercaptopropyltrialkoxysilane and functional group-containing (meth)acrylic acid esters... 42

¹H NMR (600 MHz, CDCl₃) δ 4.04 (t, *J*=6.8 Hz, 2H, C(O)OC<u>H</u>₂); 3.52 (s, 9H, Si(OCH₃)₃); 2.73 (t, *J*=7.5 Hz, 2H); 2.55 (t, *J*=7.5 Hz, 2H), 2.51 (m, 2H) (CH₂SCH₂CH₂); 1.65 (m, 2H, SiCH₂C<u>H</u>₂); 1.58 (m, 2H, C(O)OCH₂C<u>H</u>₂); 1.32 – 1.23 (m, 6H, CH₂), 0.85 (t, *J*=6.9 Hz, 3H, CH₃); 0.71 (m, 2H, SiCH₂) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 172.10 (C=O); 64.88 (C(O)O<u>C</u>H₂); 50.57 (Si(OCH₃)₃); 35.04, 31.47, 28.62, 26.90, 25.62, 22.98, 22.58 (CH₂); 14.03 (CH₃); 8.60 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.52 (Si(OCH₃)₃) ppm.

Figure 1. ¹H NMR spectrum of 3a.

Figure 2. ¹³C NMR spectrum of 3a.

Figure 3. ²⁹Si NMR spectrum of 3a.

Figure 4. FT-IR spectrum of 3a.

Product characterization

¹H NMR (400 MHz, CDCl₃) δ 5.88 (ddt, *J*=17.2, 10.5, 5.7 Hz, 1H, (-C<u>H</u>=CH₂); 5.29 (dq, *J*=17.2, 1.6 Hz, 1H), 5.19 (dq, *J*=10.4, 1.3 Hz, 1H) (-CH=C<u>H₂</u>); 4.56 (dt, *J*=5.7, 1.5 Hz, 2H, C(O)OC<u>H₂</u>); 3.52 (s, 9H, Si(OCH₃)₃); 2.80 (m, 1H), 2.65 (sext, J=6.9 Hz, 1H), 2.56-2.48 (m, 3H) (C<u>H₂SCH₂CH</u>); 1.64 (m, 2H, SiCH₂C<u>H₂</u>); 1.22 (d, *J*=6.9 Hz, 3H, CHCH₃); 0.70 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 174.85 (C=O); 132.21 (-CH=CH₂); 118.16 (-CH=CH₂); 65.23 (C(O)OCH₂); 50.56 (Si(OCH₃)₃); 40.33 (CH₂SCH₂C<u>H</u>); 35.56, 35.33 (CH₂SCH₂); 23.01 (SiCH₂CH₂); 16.86(CHCH₃); 8.56 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.49 (Si(OCH₃)₃) ppm.

6

Figure 6. ¹³C NMR spectrum of 3b.

Figure 7. ²⁹Si NMR spectrum of 3b.

FT-IR spectrum

Figure 8. FT-IR spectrum of 3b.

¹H NMR (600 MHz, CDCl₃) δ 3.65 (s, 3H, OCH₃); 3.52 (s, 9H, Si(OCH₃)₃); 2.77 (dd, *J*=13.0, 7.1 Hz, 1H), 2.62 (sext, *J*=7.0 Hz, 1H), 2.53-2.47 (m, 3H) (CH₂SCH₂CH); 1.63 (m, 2H, SiCH₂C<u>H₂</u>); 1.20 (d, *J*=7.0 Hz, 3H, CHC<u>H₃</u>); 0.69 (m, 2H, SiCH₂) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 175.46 (C=O); 51.58 (OCH₃); 50.35 (Si(OCH₃)₃); 40.04 (<u>C</u>HC(O)); 35.35, 35.17 (CH₂SCH₂); 22.81 (SiCH₂C<u>H₂</u>); 16.63 (CH<u>C</u>H₃); 8.36 (SiCH₂) ppm. ²⁹Si NMR (119 MHz, CDCl₃) δ -42.49 Si(OCH₃)₃) ppm.

Figure 9. ¹H NMR spectrum of 3c.

Figure 11. ²⁹Si NMR spectrum of 3c.

Figure 12. FT-IR spectrum of 3c.

Product characterization

¹H NMR (600 MHz, CDCl₃) δ 3.64 (s, 3H,OCH₃); 3.52 (s, 9H, Si(OCH₃)₃); 2.72 (t, *J*=7.4 Hz, 2H), 2.56 (t, *J*=7.4 Hz, 2H) 2.50 (m, 2H) (CH₂SCH₂CH₂C(O)); 1.64 (m, 2H, SiCH₂C<u>H₂</u>); 0.70 (m, 2H, SiCH₂) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 172.44 (C=O); 51.76 (OCH₃), 50.55 (Si(OCH₃)₃); 35.02, 34.77 (CH₂SCH₂); 26.82 (<u>C</u>H₂C(O)); 22.95 (SiCH₂<u>C</u>H₂); 8.57 (SiCH₂) ppm. ²⁹Si NMR (119 MHz, CDCl₃) δ -42.52 Si(OCH₃)₃) ppm.

Figure 14. ¹³C NMR spectrum of 3d.

Figure 15. ²⁹Si NMR spectrum of 3d.

FT-IR spectrum

Figure 16. FT-IR spectrum of 3d.

¹H NMR (400 MHz, CDCl₃) δ 3.53 (s, 9H, Si(OCH₃)₃); 2.69 (m, 2H), 2.49 (m, 4H) (CH₂SCH₂CH₂); 1.66 (m, 2H, SiCH₂C<u>H₂</u>); 1.41 (m, 9H, CH₃); 0.71 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 171.15 (C=O); 80.56 (<u>C</u>(CH₃)₃); 50.37 (Si(OCH₃)₃); 35.99, 34.84 (CH₂SCH₂); 27.93 (CH₃); 26.85 (SCH₂<u>C</u>H₂); 22.80 (SiCH₂<u>C</u>H₂) 8.39 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.48 (Si(OCH₃)₃) ppm.

Figure 17. ¹H NMR spectrum of 3e.

Figure 19. ²⁹Si NMR spectrum of 3e.

Figure 20. FT-IR NMR spectrum of 3e.

Product characterization

¹H NMR (400 MHz, CDCl₃) δ 4.39 (t, *J*=6.4 Hz, 2H, C(O)OCH₂); 3.55 (s, 9H, Si(OCH₃)₃); 2.79 (dd, *J*=12.7, 7.3 Hz, 1H), 2.67 (sext, *J*=6.9 Hz, 1H), 2.58-2.41 (m, 5H) (CH₂SCH₂CH, CH₂CF₂); 1.67 (m, 2H, (SiCH₂CH₂); 1.23 (d, *J*=6.9 Hz, 3H, CH₃); 0.72 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 174.53 (C=O); 119.85-108.09 (CF₂, CF₃); 56.24 (C(O)O<u>C</u>H₂); 50.29 (Si(OCH₃)₃); 39.98, 35.28, 34.94, 30.34, (<u>C</u>H₂S<u>C</u>H₂<u>C</u>H, <u>C</u>H₂CF₂); 22.76 (SiCH₂<u>C</u>H₂); 16.46 (CH₃); 8.32 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.54 (Si(OCH₃)₃) ppm.

Figure 22. ¹³C NMR spectrum of 3f.

Figure 23. ²⁹Si NMR spectrum of 3f.

Figure 24. FT-IR NMR spectrum of 3f.

¹H NMR (400 MHz, CDCl₃) δ 5.76 (hept, *J*=6.1 Hz, 1H, CH(CF₃)₂); 3.55 (s, 9H, Si(OCH₃)₃); 2.80 (s, 4H), 2.55 (m, 2H) (CH₂SCH₂CH₂); 1.69 (m, 2H, SiCH₂C<u>H₂</u>); 0.73 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 168.90 (C=O); 124.68-116.25 (CF₃); 66.68 (<u>C</u>H(CF₃)₂); 50.85 (Si(OCH₃)₃); 35.05, 34.23 (CH₂SCH₂); 26.30 (CH₂SCH₂<u>C</u>H₂); 22.99 (SiCH₂CH₂); 8.56 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.62 (Si(OCH₃)₃) ppm.

Figure 25. ¹H NMR spectrum of 3g.

Figure 27. ²⁹Si NMR spectrum of 3g.

Figure 28. FT-IR spectrum of 3g.

Product characterization

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.32 (m, 5H, C₆H₅); 5.13 (s, 2H, C(O)OCH₂); 3.55 (s, 9H, Si(OCH₃)₃); 2.84 (dd, *J*=12.8, 7.1 Hz, 1H), 2.71 (sext, *J*=6.9 Hz, 1H), 2.57 (dd, *J*=12.8, 6.8 Hz, 1H), 2.51 (m, 2H) (CH₂SCH₂CH); 1.67 (m, 2H, SiCH₂CH₂); 1.26 (d, *J*=6.9 Hz, 3H, CH₃); 0.72 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 175.15 (C=O); 136.11, 128.67-128.23 (C₆H₅); 66.51 (C(O)O<u>C</u>H₂); 50.83 (Si(OCH₃)₃); 40.48 (CH₂SCH₂<u>C</u>H); 35.71, 35.66 (CH₂SCH₂); 23.10 (SiCH₂<u>C</u>H₂); 16.94 (CH₃); 8.66 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.47 (Si(OCH₃)₃) ppm.

Figure 30. ¹³C NMR spectrum of 3h.

Figure 32. FT-IR spectrum of 3h.

¹H NMR (400 MHz, CDCl₃) δ 4.06 (t, *J*=6.7 Hz, 2H, C(O)CH₂); 3.55 (s, 9H, Si(OCH₃)₃); 2.75 (t, *J*=7.4 Hz, 2H), 2.55 (dt, *J*=14.9, 7.4 Hz, 4H) (CH₂SCH₂CH₂); 1.68 (m, 2H, SiCH₂CH₂); 1.60 (m, 2H, C(O)CH₂C<u>H₂</u>); 1.33 – 1.24 (m, 18H, CH₂); 0.86 (t, *J*=6.7 Hz, 3H, CH₃); 0.73 (m, 2H, CH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 172.17 (C=O); 64.96 (C(O)O<u>C</u>H₂); 50.63 Si(OCH₃)₃); 35.08, 32.02, 29.74, 29.73, 29.68, 29.62, 29.45, 29.35, 28.70, 26.94, 26.01, 23.02, 22.79 (CH₂); 14.21 (CH₃), 8.64 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.49 (Si(OCH₃)₃) ppm

Figure 33. ¹H NMR spectrum of 3i.

Figure 35. ²⁹Si NMR spectrum of 3i.

Figure 36. FT-IR spectrum of 3i.

Product characterization

¹H NMR (400 MHz, CDCl₃) δ 4.06 (tt, *J*=6.7, 1.3 Hz, 2H, C(O)OCH₂); 3.54 (m, 9H, (Si(OCH₃)₃); 2.80 (ddt, *J*=12.7, 7.0, 1.4 Hz, 1H), 2.62 (m, 1H), 2.52 (m, 3H) (CH₂SCH₂CH); 1.74 – 1.64 (m, 2H, SiCH₂CH₂); 1.64 – 1.55 (m, 2H, C(O)OCH₂C<u>H₂</u>); 1.32 – 1.21 (m, 21H, CH₂, CH₃); 0.85 (m, 3H, CHC<u>H₃</u>); 0.72 (m, 2H, SiCH₂) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 175.02 (C=O); 64.50 (C(O)O<u>C</u>H₂); 50.28 (Si(OCH₃)₃); 40.10, 35.28, 35.10, 31.67, 29.40, 29.39, 29.34, 29.28, 29.11, 29.00, 28.38, 25.66, 22.74, 22.45 (CH₂); 16.62 (CH<u>C</u>H₃); 13.87 (CH₃); 8.30 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.47 (Si(OCH₃)₃) ppm.

Figure 38. ¹³C NMR spectrum of 3j.

Figure 39. ²⁹Si NMR spectrum of 3j.

FT-IR spectrum

Figure 40. FT-IR spectrum of 3j.

¹H NMR (600 MHz, CDCl₃) δ 4.16 (dq, *J*=13.0, 5.4 Hz, 2H, C(O)OCH₂); 3.51 (s, 9H, Si(OCH₃)₃); 2.78 – 2.74 (m, 3H), 2.63 (sext, *J*=7.0 Hz, 1H), 2.54-2.47 (m, 3H) (CH₂); 1.63 (m, 2H, SiCH₂CH₂); 1.20 (d, *J*=7.0 Hz, 3H, CH₃); 1.06 (s, 9H, CH₃); 0.69 (m, 2H, SiCH₂) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 174.87 (C=O); 64.96 (C(O)OCH₂); 50.34 (Si(OCH₃)₃); 41.10 (CH₂NH); 40.07, 35.36, 35.18 (CH₂SCH₂); 28.74 ((CH₃)₃); 22.80 (SiCH₂CH₂); 16.77 (CH<u>C</u>H₃); 8.38 (SiCH₂) ppm. ²⁹Si NMR (119 MHz,CDCl₃) δ -42.55 (Si(OCH₃)₃) ppm.

Figure 41. ¹H NMR spectrum of 3k.

Figure 42. ¹³C NMR spectrum of 3k.

100 80 60 40 20 0 -20 -40 -100 f1 (ppm) -130 -160 -60 -190 -250 -280 -80 -220

Figure 43. ²⁹Si NMR spectrum of 3k.

Figure 44. FT-IR NMR spectrum of 3k.

Product characterization

H NMR (400 MHz, CDCl₃) δ 4.13 (t, *J*=5.7 Hz, 2H, C(O)OCH₂); 3.48 (s, 9H, Si(OCH₃)₃); 2.69 (m, 2H), 2.54 (m, 4H), 2.47 (m, 2H) (CH₂SCH₂CH₂, CH₂N(CH₃)₂); 2.22 (s, 6H, N(CH₃)₂); 1.61 (m, 2H, SiCH₂CH₂); 0.66 (m, 2H, SiCH₂) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 172.82 (C=O); 62.04 (C(O)OCH₂); 57.51 (<u>C</u>H₂N(CH₃)₂); 50.34 (Si(OCH₃)₃); 45.41 (N(CH₃)₂); 34.78, 34.67 (CH₂SCH₂); 26.56 (CH₂SCH₂<u>C</u>H₂); 22.72 (SiCH₂CH₂); 8.36 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.56 (Si(OCH₃)₃) ppm.

Figure 45. ¹H NMR spectrum of 3I.

Figure 46. ¹³C NMR spectrum of 3I.

Figure 47. ²⁹Si NMR spectrum of 3I.

FT-IR spectrum

Figure 48. FT-IR NMR spectrum of 3I.

¹H NMR (400 MHz, CDCl₃) δ 4.15 (t, *J*=5.8 Hz, 2H, C(O)OCH₂); 3.50 (s, 9H, Si(OCH₃)₃); 2.75 (dd, *J*=12.7, 7.1 Hz, 1H), 2.62 (sext, *J*=6.9 Hz, 1H), 2.55-2.44 (m, 5H) (CH₂SCH₂CH, CH₂N(CH₃)₂); 2.23 (s, 6H, N(CH₃)₂); 1.62 (m, 2H, SiCH₂CH₂); 1.18 (d, *J*=6.9 Hz, 3H, CH₃); 0.67 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 175.20 (C=O); 62.37 (C(O)OCH₂); 57.71 (CH₂N(CH₃)₂); 50.54 (Si(OCH₃)₃); 45.67 (N(CH₃)₂); 40.17 (CH₂SCH₂CH); 35.53, 35.32 (CH₂SCH₂); 22.99 (SiCH₂CH₂); 16.84 (CH₃); 8.57 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.53 (Si(OCH₃)₃) ppm.

Figure 49. ¹H NMR spectrum of 3m.

Figure 51. ²⁹Si NMR spectrum of 3m.

Figure 52. FT-IR NMR spectrum of 3m.

Product characterization

¹H NMR (600 MHz, CDCl₃) δ 4.38 (dt, *J*=12.3, 3.2 Hz, 1H, C(O)CH₂CHC<u>H₂</u>); 3.90 (ddd, *J*=16.0, 12.3, 6.2 Hz, 1H, C(O)CH₂CHC<u>H₂</u>); 3.51 (s, 9H, (Si(OCH₃)₃); 3.16 (m, 1H, CH₂C<u>H</u>CH₂); 2.80-2.76 (m, 2H), 2.67 (m, 1H), 2.61 (m, 1H), 2.53 (m, 1H), 2.49 (m, 2H) (C<u>H₂SCH₂CH</u>, CHOC<u>H₂</u>); 1.63 (m, 2H, SiCH₂C<u>H₂</u>); 1.21 (dd, *J*=7.0, 1.6 Hz, 3H, CH₃); 0.69 (m, 2H, SiCH₂) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 174.88 (C=O); 65.03 (d) (C(O)CH₂); 50.54 (Si(OCH₃)₃); 49.34 (d) (C(O)OCH₂<u>C</u>H); 44.62 (d) (C(O)OCH₂CH<u>C</u>H₂); 40.22 (d) (CH₂SCH₂<u>C</u>H); 35.55, 35.27 (d) (CH₂SCH₂); 23.01 (SiCH₂<u>C</u>H₂); 16.83 (d) (CH₃); 8.55 (SiCH₂) ppm. ²⁹Si NMR (119 MHz, CDCl₃) δ -42.51 Si(OCH₃)₃) ppm.

Figure 54. ¹³C NMR spectrum of 3n.

FT-IR spectrum

Figure 56. FT-IR NMR spectrum of 3n.

Product characterization

¹H NMR (400 MHz, CDCl₃) δ 4.19 (m, 2H, (O)OCH₂); 3.64 (m, 2H, C(O)CH₂C<u>H₂</u>); 3.61 – 3.56 (m, 32H, CH₂); 3.51 (s, 9H, (Si(OCH₃)₃); 3.32 (s, 3H, CH₃); 2.71 (m, 2H), 2.57 (m, 2H), 2.48 (m, 2H) (CH₂SCH₂CH₂); 1.64 (m, 2H, SiCH₂CH₂); 0.69 (m, 2H, SiCH₂) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 172.05 (C=O); 72.05 (C(O)CH₂CH₂); 70.69 (CH₂); 69.19 (CH₂); 63.89 (C(O)CH₂); 59.13 (CH₃); 50.65 (Si(OCH₃)₃); 35.12, 35.08 (CH₂SCH₂); 26.83 (CH₂SCH₂CH₂); 23.02 (SiCH₂CH₂); 8.65 (SiCH₂) ppm. ²⁹Si NMR (79 MHz, CDCl₃) δ -42.55 (Si(OCH₃)₃) ppm.

NMR spectra

Figure 57. ¹H NMR spectrum of 30.

Figure 59. ²⁹Si NMR spectrum of 3o.

Figure 60. FT-IR NMR spectrum of 3o.

Table S1. Comparison of conditions of reactions and yiel	ds for the obtained alkoxysilanes with
the literature data	

Product	Current research	Ref.		
		Conditions: AIBN (5 mol%), ethanol,		
3c	Conditions: DMPP	24h, reflux, inert atmosphere		
	(0.5 wt.%), 1h	Yield: 95%		
0	Yield: 93%	[S1] M Sato S Kitajima US		
		2018362552A1, KRI, Inc., 2018		
		Conditions: AIBN (2 mol%), ethyl		
31	Conditions: DMPP	acetate, 80°C, 24h, inert atmosphere		
	(0.5 wt.%) <i>,</i> 0.5h			
Si S N		Yield: quantitative		
o `o—	Yield: 98%			
		[S1]		
	Conditions: DMPP	Conditions: AIBN (2 mol%), ethyl		
3m	(2 wt.%) <i>,</i> 1h	acetate, 80°C, 24h, inert atmosphere		

-0 \wedge \wedge \wedge N	Yield: 95%	Yield: 93%
		[S1]

Table S2. Other examples (conditions and yields) of alkoxysilanes obtained from 3-mercaptopropyltrialkoxysilane and functional group-containing (meth)acrylic acid esters

Product	Conditions	Yield	Ref.
	Diisopropylami ne (4 mol%), EtOH, rt, 24h	80%	 [S2] J. Michinishi, Y. Hishida, Y. Yoshitetsu, JP 2015 110534A, NOF Corporation, 2015
	Benzophenone (2 mol%), EtOH, rt, UV- irradiation (300 nm), 15 min	quanti tative	 [S3] M. E. Lee, L. Lei, KR 2016/107443A, University Industry Foundation Yonsei University Wonju Campus, 2016 [S4] M. E. Lee, L. Lei, KR 201710417A, University Industry Foundation Yonsei University Wonju Campus, 2017
	Diisopropylami ne (4 mol%), MeOH, rt, 16h	_	 [S5] S. Takamatsu, R. Matsuno, S. Kumagai, Y. Kokubo, K. Hashimoto, H. Yoshikawa, A. Takahara, H. Otsuka, EP 2832736A1, Sumitomo Riko Co. Ltd. National University Corporation Kyushu University, 2015
	Et₃N (5 mol%), EtOH, rt, 24h	96%	[S6] M. Umezaki, D. Sakuma, T. Nishino, T. Kishioka, Y. Hiroi.

			S. Kimura, T.
			201/1370182A1
			M Umezaki D
			Sakuma T
			Nishino T
			Kishioka, Y. Hiroi.
			S. Kimura. T.
			Ohashi, Y. Usui,
			Nissan Chemical
			Corp., 2014
			[S7] Y. Tanaka, T.
$O_{\text{N}} = O_{\text{N}} = O_{\text{N}}$	Acetonitrile, rt, 5h	97%	Jinno, CN
			103596965B, Koei
O F F			Chemical Co.,
			2016
0	AIBN (1 mol%),		[S8] M. Sato, S.
	80°C <i>,</i> inert	_	Kitajima, JP
	atmosphere,		2020152646A, KRI,
	overnight		Inc. 2020
	AIBN (2 mol%),		[S9] M Sato S
	ethyl acetate,		Kitajima, IP
	24h, reflux,	97%	2018115171A. KRI.
0— 0—/	inert .		Inc. 2018
	atmosphere		