Supporting Information

Citric Acid Modified Semi-Embedded Silver Nanowires/Colorless Polyimide Transparent Conductive Substrates for Efficient Flexible Perovskite Solar Cells

Jie Gong ^{a,b,*}, Xiao Fan ^a, Zhangyang Zong ^a, Mingyang Yang ^a, Ya Sun ^a, Guoqun Zhao ^{b,*}

^a China Aerospace Science & Industry Corp. (Changsha) Advanced Material Research Institute Co.,

Ltd, Changsha, Hunan 410205, PR China

^b Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, PR China

E-mail address: gongjie_@mail.sdu.edu.cn a & zhaogq@sdu.edu.cn b

Figure S1 Temperature-time curve of gradient heating process.

Figure S2 Sheet resistance of AgNWs/glass samples for (a) 20 μ m AgNWs and (b) 100 μ m AgNWs with various AgNWs suspension dilution ratios and spin-coating layers.

20 µm length AgNWs:

Figure S3 The visible light transmittances (glass supporter as reference) of AgNWs/glass samples with various AgNWs suspension dilution ratios and spin-coating layers: (a~d) 20 μ m length AgNWs, (e~h) 100 μ m length AgNWs.

Figure S4 Transmittance at 550 nm (T_{550} , glass supporter as reference) of AgNWs/glass samples for (a) 20 μ m AgNWs and (b) 100 μ m AgNWs with various AgNWs suspension dilution ratios and spin-coating layers.

Figure S5 Relationship between sheet resistance and T_{550} (glass supporter as reference) of AgNWs/glass samples with 20 or 100 μ m lengths

Figure S6 Visible light transmittance (air as reference) of pure cPI flexible substrate.

Figure S7 SEM images of the surface of AgNWs/glass samples prepared without (a,c) or with (b,d) CA.

Figure S8 SEM images of the surface of AgNWs/glass samples prepared with different CA content: (a) without CA, (b) 0.5 mg/ml CA, (c) 1 mg/ml CA, (d) 1.5 mg/ml CA, (e) 2 mg/ml CA.

Figure S9 (a-c) AFM images of the flexible AgNWs/cPI samples prepared without (a), with (b) CA and commercial ITO-PET (c), respectively. (d-f) Surface roughness profiles of the flexible AgNWs/cPI samples prepared without (d), with (e) CA, and commercial ITO-PET (f).

Figure S10 *J-V* curves of the best performing flexible PSCs based on AgNWs-cPI substrates with different HTLs.

Figure S11 *J-V* curves of the best performing flexible PSCs based on AgNWs-cPI substrate without CA under forward and reverse scans.

Figure S12 J-V curves of the best performing flexible PSCs based on ITO-PET substrate.

Figure S13 Light stability measurements of unencapsulated devices at room temperature in N_2 atmosphere under AM 1.5 G simulated sunlight illumination.

Figure S14 Heat stability measurements of unencapsulated devices at room temperature in N_2 atmosphere under continues 85°C heating.

Figure S15 Automatic mechanical device for bending tests.

Dilution notio	Spin costing lover	Sheet resistance (ohm/sq)			
	Spin-coating layer	20 µm length AgNWs	100 μm length AgNWs		
1.0	2	9.5±1.01	5.3±0.28		
	4	3.1±0.15	2.6±0.10		
1.0	6	1.9±0.15	$1.4{\pm}0.07$		
	8	1.1±0.13	0.9±0.11		
	2	76.9±10.56	16.6±1.27		
1 . 2	4	15.5±1.56	7.6±0.41		
1.2	6	$8.0{\pm}0.69$	4.5±0.50		
	8	$6.0{\pm}0.58$	3.1±0.34		
	2	459.4±66.06	39.0±3.94		
1 • 4	4	$60.0{\pm}7.00$	12.5±1.20		
1.4	6	21.2±1.32	5.7±0.52		
	8	11.2±1.33	4.5±0.36		
1:6	2	801.8±108.88	55.6±4.58		
	4	111.1±9.62	20.7±1.93		
	6	74.7 ± 5.48	10.0 ± 0.41		
	8	13.5±1.67	7.3±0.47		

Table S1 A summary of the sheet resistance of AgNWs/glass samples with various AgNWs suspension dilution ratios and spin-coating layers.

Table S2 A summary of the transmittance at 550 nm (T_{550} , glass supporter as reference) of AgNWs/glass samples with various AgNWs suspension dilution ratios and spin-coating layers.

Dilution ratio	Spin coating layor	Transmittance at 550 nm (T ₅₅₀ , %)			
Dilution ratio	Spin-coating layer	20 µm length AgNWs	100 µm length AgNWs		
	2	91.9	90.8		
1.0	4	86.4	84.4		
1.0	6	79.2	77.1		
	8	73.4	71.3		
	2	97.3	96.5		
1 • 2	4	95.2	94.4		
1 • 2	6	93.3	92.8		
	8	92.0	91.3		
	2	98.4	97.6		
1 • 4	4	96.3	95.7		
1 • 4	6	95.4	95.1		
	8	94.0	92.3		
1:6	2	99.0	98.3		
	4	97.5	96.2		
	6	96.3	96.1		
	8	95.4	94.8		

Citric acid content (mg/ml)	Sheet resistance (ohm/sq)
0	40.6±4.34
0.5	36.1±3.73
1	28.5±2.48
1.5	52.9±4.82
2	133.2±5.77

Table S3 A summary of the sheet resistance of AgNWs/glass samples with different citric acid content.

Table S4 A summary of the sheet resistance of AgNWs/glass samples and AgNWs/cPI products obtained under different gradient heating conditions.

AgNWs/glass Samples	Sheet resistance (ohm/sq)	Gradient heating condition	Sheet resistance of AgNWs/cPI product (ohm/sq)
without CA	39.7±3.63	60, 90, 120, and 150 °C for 1 h each step	56.5±3.79
without CA	40.5±4.21	80, 110, 140, and 170 °C for 1 h each step	93.9±4.65
without CA	41.2±4.07	100, 130, 160, and 190 °C for 1 h each step	157.2±13.82
with CA	28.9±2.67	60, 90, 120, and 150 °C for 1 h each step	32.6±2.05
with CA	29.3±2.84	80, 110, 140, and 170 °C for 1 h each step	21.3±2.26
with CA	29.5±3.02	100, 130, 160, and 190 °C for 1 h each step	52.4±3.94

 Table S5 A summary of PCE variation of flexible PSCs during mechanical bending test with different curvature radius.

Samples	Flat	10	8	6	4	3	2
AgNWs/c PI with CA	1	1.000±0.0 07	0.993±0.0 09	0.994±0.0 06	0.994±0.0 07	0.973±0.0 07	0.938±0.0 06
AgNWs/c PI without CA	1	0.999±0.0 05	0.996±0.0 04	0.996±0.0 04	0.994±0.0 03	0.979±0.0 05	0.944±0.0 12
ITO-PET	1	1.000±0.0 07	0.992±0.0 08	0.987±0.0 05	0.986±0.0 05	0.952±0.0 09	0.922±0.0 25

Samples	0	500	100	1500	2000
AgNWs/cPI with CA	1	0.980±0.016	0.975±0.011	0.957±0.009	0.931±0.013
AgNWs/cPI without CA	1	0.954±0.021	0.927±0.014	0.861±0.035	0.797±0.035
ITO-PET	1	0.830 ± 0.020	0.600 ± 0.046	0.230±0.040	0.099 ± 0.026

Table S6 A summary of the sheet resistance variation (R_0/R) of the flexible substrate tested under different bending cycles at a curvature radius of 4 mm.

Table S7 A summary of the PCE of flexible PSCs fabricated on the substrates that have been bend tested.

testea.					
Samples	0	500	100	1500	2000
AgNWs/cPI with CA	1	0.996±0.009	0.985±0.009	0.967±0.008	0.958±0.007
AgNWs/cPI without CA	1	0.978±0.004	0.930±0.011	0.921±0.025	0.887±0.035
ITO-PET	1	0.980±0.010	$0.783 {\pm} 0.038$	0.680±0.056	0.480±0.056

Table S8 A summary of the PCE variation of flexible PSCs tested under different bending cycles at a curvature radius of 4 mm.

Samples	0	500	100	1500	2000
AgNWs/cPI with CA	1	0.989±0.014	0.985±0.021	0.921±0.014	0.878±0.014
AgNWs/cPI without CA	1	0.954±0.015	0.894±0.010	0.821±0.026	0.733±0.015
ITO-PET	1	$0.903 {\pm} 0.040$	$0.453{\pm}0.051$	0.163±0.032	