Electronic Supplementary Information

Enabling fast ionic transport in CeO₂-La_{1-2x}Ba_xBi_xFeO₃ nanocomposite electrolyte for low temperature solid oxide fuel cell application.

Nusrat Shaheen^{a,b} Zheng Chen^{a,b}*, Yumei Nong^{a,b}, Tao Su^{a,b}, Muneerah Alomar^c, Nada Althubaiti^c, Muhammad Yousaf^d, Yuzheng Lu^e, Qiang Liu^{e**}

^aSchool of Civil Engineering and Architecture, State Key Laboratory of Featured Metal Materials

and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China

^bKey Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

^cDepartment of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671 Saudi Arabia

^dEnergy Storage Joint Research Center, School of Energy and Environment, Southeast University, No.2 Si Pai Lou, Nanjing 210096, China

^eCollege of Electronic and Engineering, Nanjing Xiaozhuang University Nanjing 211171, China

*Correspondence to : Zheng Chen: chenzheng@gxu.edu.cn, Qiang Liu: qiangliu@njxzu.edu.cn

Fig. S1. HR-TEM images of CeO₂-LBBF

Fig. S2. (a) HR-TEM micrograph of 90CeO₂-10LBBF (b-g) EDS mapping of Ce, La, Ba, Bi, Fe, and O of 90CeO₂-10LBBF.

Fig. S3. Elemental mapping graph of 90CeO₂-10LBBF

Fig. S4. Stability test of CeO₂ and 90CeO₂-10LBBF electrolyte-based SOFC device at 550 °C under current density j = 130 mA cm⁻².

Fig. S5. Cross-sectional SEM of the 90CeO₂-10LBBF electrolyte after fuel cell performance