Supplementary Information

Neutron Diffraction and DFT Studies of Oxygen Defect and Transport in Higher-Order Ruddlesden-Popper Phase Materials

Mudasir A. Yatoo^{1,2}, Ieuan Seymour¹ and Stephen J. Skinner^{1,2}

¹Imperial College London, Department of Materials, Faculty of Engineering, Exhibition Road, SW7 2AZ. United Kingdom

²EPSRC Centre for Doctoral Training in Advanced Characterisation of Materials, Exhibition Road, SW7 2AZ. United Kingdom

Figure S1. Le Bail refinement of the room-temperature high-resolution (bank 5) L2P2N3 data set in monoclinic P12₁/al space group ($\chi^2 = 4.10$; Rp = 1.7% and wRp = 1.1%).

Table S1. Fractional atomic coordinates and thermal parameters obtained after Rietveld refinement of

Α	X	У	Z	Uiso
La/Pr(1)	0.0	-0.0043(2)	0.4328(2)	0.008(3)
La/Pr(2)	0.0	-0.0122(2)	0.2990(2)	0.013(6)
Ni(1)	0.0	0.0	0.0	0.008 (1)
Ni(2)	0.0	-0.0015(1)	0.1380(1)	0.009(8)
O(1)	0.25	0.25	0.0067(7)	
O(2)	0.0	0.9549(1)	0.0687(3)	
O(3)	0.25	0.25	0.135(3)	
O(4)	0.0	0.0377(2)	0.2134(3)	
O(5)	0.25	0.75	0.1457(3)	

L3P1N3 ND patterns recorded at 250 °C using orthorhombic model (Bmab).

Table S2. Fractional atomic coordinates and thermal parameters obtained after Rietveld refinement of L3P1N3 ND patterns recorded at 800°C using tetragonal model (I4/mmm).

Figure S2. Rietveld refinement of the two data sets obtained at 25 °C ($\chi^2 = 1.91$; Rp = 6.5% and wRp = 3.0%) and 600 °C ($\chi^2 = 1.52$; Rp = 5.7% and wRp = 2.7%). A ~2% impurity of NiO was detected and was refined in cubic Fm3m space symmetry.

Figure S3. Rietveld refinement of the two data sets obtained at 250 °C ($\chi^2 = 11.47$; Rp = 8.7% and wRp = 7.6%) and 800 °C ($\chi^2 = 14.36$; Rp = 6.9% and wRp = 5.9%). A ~2% impurity of NiO was detected and was refined in cubic Fm3m space symmetry.

Atom	Atomic displa	Fractional		
	U_{11}/U_{iso}	U_{22}	U_{33}	occupancy
La(1)	1.9(3)			0.77(3)
Pr(1)	1.9(3)			0.33(3)
La(2)	1.8(7)			0.86(5)
Pr(2)	1.8(7)			0.14(5)
O(1)	0.7(6)	6.6(3)	11.0(4)	0.97(3)
O(2)	5.4(8)	5.4(8)	3.8(9)	0.97(3)
O(3)	0.6(9)	3.5(1)	3.5(1)	0.93(2)
O(4)	6.3(3)	6.3(3)	1.6(1)	1.0

Table S4. Rietveld refinement parameters obtained for the L1P3N3 composition recorded at 800 $^\circ C$

Atom	Atomic disp	Fractional				
	U ₁₁ /U _{iso}	U_{22}	U_{33}	U_{12}	U_{23}	occupancy
La(1)	3.5(3)					0.32(6)
Pr(1)	3.5(3)					0.68(6)
La(2)	1.7(4)					0.39(7)
Pr(2)	1.7(4)					0.61(7)
O(1)	6.8(1)	5.6(1)	1.7(1)	6.1(8)		0.97(5)
O(2)	5.3(8)	0.8(7)	3.9(8)		1.0(8)	0.96(3)
O(3)	0.5(6)	3.1(1)	2.6(1)	0.6(6)		0.83(5)
O(4)	3.5(1)	11.2(1)	3.5(7)		3.3(1)	1.0
O(5)	1.3(7)	1.9(5)	2.1(7)	0.3(4)		1.0

with orthorhombic model (Bmab).

Figure S4: Plot of formation energy for oxygen vacancies at the O1–O5 sites in the Bmab primitive cell structures of $La_4Ni_3O_{10}$ and $Pr_4Ni_3O_{10}$, with 2 formula units per cell ($M_8Ni_6O_{20\pm l}$) at T = 0 K without a U correction on Ni.

Figure S5. Variation in oxygen interstitial (int.) and O1 vacancy formation energy as a function of temperature for lowest energy $La_4Ni_3O_{10}$, $La_2Pr_2Ni_3O_{10}$ and $Pr_4Ni_3O_{10}$ structures.