Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Sulfur monoxide complex of platinum fluoride with a positively charged ligand

Deji Leng,^{a,b} Zhixin Xiong,^{a,b} Jingwen Hu,^{a,b} Tiejian Zhu,^a Xiuting Chen,^a Yu Gong^{*a}

^a Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of

Sciences, Shanghai 201800, China

^b School of Nuclear Science and Technology, University of Chinese Academy of Sciences,

Beijing 100049, China

*E-mail: gongyu@sinap.ac.cn.

Additional Experimental and Theoretical Results

Figure S1. Infrared difference spectra in the 1350-1150, 820-770 and 640-585 cm⁻¹ regions from codeposition of laser-ablated platinum atoms and isotopically labeled SOF₂ in solid argon at 4 K (spectra taken after 25 K annealing minus spectra taken after $\lambda > 220$ nm irradiation): (a) 0.5% SOF₂, (b) 0.5% ³⁴SOF₂, (c) 0.5% S¹⁸OF₂. Labels A and B denote the Pt(SOF₂) and PtF₂(η¹-SO) products, respectively.

Figure S2. IRC plots of **TS1-4** associated with the structural transformation as shown in the potential energy profile.

	mode	SOF ₂	³⁴ SOF ₂	S ¹⁸ OF ₂
	S-O str.	1316.4 ª	1302.8 ª	1270.8 ª
Pt(SOF ₂)	sym.F-S-F str.	794.3 ^a	781.5 ª	793.4 ª
	wagging	596.6	590.6	587.5
	S-O str.	1205.4	1193.0	1162.0
$PtF_2(\eta^1-SO)$	antisym.F-Pt-F str.	619.8	622.1	619.6
	sym.F-Pt-F str.	594.9	594.7	594.8

Table S1. Experimental infrared absorptions (cm⁻¹) of $Pt(SOF_2)$ and $PtF_2(\eta^1-SO)$ in solid argon.

^a Determined from the infrared difference spectrum as they are partially covered by the

SOF₂ precursor bands.

	bond % of NBO on		% of each hybrid in the NBO from each atom			
	type	each atom	S	р	d	f
S-Ο π	π	O (68.54)	0.00	99.25	0.74	0.01
	л	S (31.46)	0.00	98.05	1.86	0.09
S-Ο σ	_	O (68.63)	25.92	72.51	1.55	0.02
	σ	S (31.37)	16.87	80.95	2.04	0.14
Pt-S σ	_	S (47.90)	6.23	91.88	1.84	0.06
	σ	Pt (52.10)	21.51	0.21	78.28	-
S-O	_*	O (31.46)	0.00	99.25	0.74	0.01
	π	S (68.54)	0.00	98.05	1.86	0.09
Dt S	C *	S (52.10)	6.23	91.88	1.84	0.06
rt-5	0.	Pt (47.90)	21.51	0.21	78.28	-

Table S2. Orbital composition of the S–O and Pt–S bonds in $PtF_2(\eta^1$ -SO) from NBOcalculations at the B3LYP/6-311+G(3df)/SDD level.

functional	SO	Pt
B3LYP	0.37	0.82
M06	0.39	0.84
M06-L	0.30	0.84
PBE0	0.38	0.82
TPSSh	0.33	0.81

Table S3. NPA charges of SO and Pt in the $PtF_2(\eta^1$ -SO) complex calculated at different level of theory.

functional	SO in $PtF_2(\eta^1-SO)$		free SO	
	frequency (cm ⁻¹)	bond length (Å)	frequency (cm ⁻¹)	bond length (Å)
B3LYP	1245.7	1.449	1157.3	1.488
M06	1309.3	1.438	1198.7	1.479
M06-L	1250.5	1.453	1167.5	1.487
PBE0	1286.6	1.441	1200.7	1.478
TPSSh	1224.3	1.457	1153.8	1.491

Table S4. Vibrational frequencies and bond lengths of free SO and the SO ligand in $PtF_2(\eta^1-SO)$ calculated at different level of theory.

Cartesian coordinates for $PtF_2(\eta^1-SO)$, $Pt(SOF_2)$ as well as the transition states and intermediates involved in the isomerization process obtained at the B3LYP/6-311+G(3df)/SDD level of theory. All of these species possess singlet ground states.

$PtF_2(\eta^1-SO)$

F	0.05974800 0.85788800 1.87175700
0	-1.21955600 -2.36141200 0.00000000
F	0.05974800 0.85788800 -1.87175700
S	0.05974800 -1.68038900 0.00000000
Pt	0.09903900 0.38891700 0.00000000

Pt(SOF₂)

0	-1.83055800	-1.49863500	0.00000000
F	0.22970800 -1.	97387700 1	.15088100
F	0.22970800 -1.	97387700 -	1.15088100
S	-0.46296900	-1.11177300	0.00000000
Pt	0.22970800 0.8	33727200 0.000	00000

TS1 $(-371.30 \text{ cm}^{-1})$

- O 2.04892700 -1.36713100 -0.44702700
- F 1.98916600 0.43737700 1.09510100
- F 0.76315500 1.75206600 -0.60024100
- S 1.33087100 -0.13122500 -0.25971200

S7

Pt -0.800/2100 -0.08549200 0.042024	400
-------------------------------------	-----

IM1

0	-1.41087700	-1.20191500	-0.24929500
F	-2.29375800	1.12967000 -0	.45153600
F	2.12868600 0.	84452200 0.1475	56700

- S -1.56792000 0.07511800 0.52532000
- Pt 0.48537700 -0.11992700 -0.04711600

TS2 (-80.26 cm^{-1})

- O 2.11617800 0.87071000 -0.90142500
- F 2.02451400 -1.02074200 0.66588600
- F -1.64364700 1.14689900 0.72603300
- S 1.46568000 0.50170500 0.33548600
- Pt -0.56164300 -0.20677400 -0.13697000

IM2

0	2.24033700 1.	14508600 -0.5	4553400
F	1.38664500 -1	.35864800	-0.09149500
F	-1.90785200	1.10677800	0.07933600

- S 1.54305500 0.37222500 0.44526000
- Pt -0.48616300 -0.16473700 -0.03398000

TS3 $(-128.38 \text{ cm}^{-1})$

- O -2.21540700 -1.27977400 -0.43672200
- F -0.88049100 1.72255100 -0.13520000
- F 1.76653900 -1.25997100 0.06303500
- S -1.58659900 -0.25355700 0.35836300
- Pt 0.45044100 0.12989600 -0.02039200

IM3

0	2.49809300 -0.7	76561200 -0	.00053800
F	-0.46868300	1.98213200 -0	.00006800
F	-0.80987100	-1.90626200	0.00026600
S	1.60691700 0.3	7136400 0.0004	1300
Pt	-0.43831300	-0.00640700	-0.00005200

TS4 (-61.87 cm^{-1})

- F -0.64264200 1.95503100 -0.07262500
- O 2.54928600 0.56778600 0.19670400
- F -0.69826500 -1.93134300 0.04050700
- S 1.58168800 -0.44898200 -0.14689800
- Pt -0.43119400 0.03113100 0.01366400