SUPPORTING INFORMATION

The synthesis and super capacitive characterization of microwave-assisted highly crystalline α -Fe₂O₃/Fe₃O₄ nanoheterostructure

Rajendra Panmand¹, Yogesh Sethi¹, Animesh Jha², Bharat Kale^{1*}

Figure SI 1

Figure SI 1TEM image of Fe₂O₃/Fe₃O₄ nanocomposite prepared at 1:3 Water to EG solvent ratios

Figure SI 2 lattice resolved HRTEM of Fe₂O₃ on Fe₂O₃ nanoparticles.

Figure SI3

Figure SI3: Nitrogen adsorption and desorption isotherms of F1, F2 and F3.

Table SI1: Comparison of supercapacitance with reported values.

Material	Supercapacitance (F/g)
a-Fe2O3/Fe3O4 heterostructure (ref 1)	150 @ 0.5mA/g
Fe2O3-Fe3O4/N-rGO (Ref 2)	120 @ 0.8 A/g
Fe_3O_4/Fe_2O_3 heterostructures (This work)	165 @ 0.5mA/g
Fe_3O_4 nanoparticles (This work)	143 @ 0.5mA/g
$Fe_{3}O_{4}$ nanoparticles (Ref 3)	95.4 @ 1.0mA/g
Fe ₃ O ₄ nanoparticles (Ref 4)	145 @ 0.5mA/g

- 1. Dejian Chen et al. RSC Adv., 2016, 6, 45023
- 2. Sourav Mallick et al. ChemElectroChem 2018, 5, 2348 2356.
- 3. P.M.Anjan et al., Materials Science and Engineering: B, 2023, 290, 116313
- 4. T. Arun et al. Applied Surface Science 485 (2019) 147–157