Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of (S)-amides

Luca Deiana, Abdolrahim A. Rafi, Jan-E. Bäckvall, Armando Córdova

Table of Contents

General methods	.S2
Experimental procedures	
All spectra	S10

General methods:

Chemicals and solvents were purchased from commercial suppliers and used as received or purified by standards techniques. Avicel[®] PH-101 (~50 µm particle size), Proteinase bacterial (Type XXIV, 7.0-14.0 units/mg solid, lyophilized powder), Brij[®] C10 (average Mn ~683) were purchased from Aldrich and used as received. Dry toluene was column-dried directly before use by a VAC: Solvent Purifier system. ¹H NMR spectra were recorded on a Bruker Avance 500 (500 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuterium incorporation as the internal standard (CDCl3: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, q = quartet, br = broad, m = multiplet), and coupling constants (Hz), integration. ¹³C NMR spectra were recorded on a Bruker Avance 500 (125.8 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl3: δ 77.26 ppm). Highresolution mass spectrometry was performed on an Agilent Technologies 6520- Q-TOF ESI-MS (positive mode) at the Mid-Sweden University Mass Spectrometry Facility. Enantiomeric ratios were determined by HPLC (Chiral Agilent Technologies Chiralpak OD-H, OJ-H, AS-H, AM-H column (4.6 mm x 250 mm)) in comparison with authentic racemic materials. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter. Unless otherwise noted, all reactions were performed with distilled solvents in oven- dried (160°C) glassware. X-ray photoelectron spectroscopy was used to determine the structure and oxidation states of the Pd nanoparticles. Elemental analyses on the Pd content were carried out by Medac LTD Analytical and chemical consultancy services (United Kingdom) by ICP-OES. Infrared spectra were recorded by Thermo Scientific NICOLET 6700 FT-IR, Smart orbit, Diamond 30000-200 cm⁻¹.

Self-assembly of APCW catalyst.

In a plastic beaker was added cellulose, sodium phosphate buffer (0.1 M, pH 7.2) and Brij C10. The suspension was stirred with a spatula until completely solubilization of brij. Next subtilisin (20 mg) was added, the mixture was stirred with a spatula until completely solubilization of the enzyme and rapidly frozen in liquid nitrogen. The catalyst was lyophilized for 70 hours to give a solid white foam. Cellulose/subtilisin was stored at -20°C.

 Table S1. Reagents for the assembling of APCW catalyst.

Entry	Catalyst	Subtilisin	Cellulose	Brij [mg]
		[mg]	[mg]	
1 ^a	Sub/Brij (1:1)	20	-	20
2 ^a	APCW1 CNC/Sub/Brij (1:1:0)	20	CNC (20)	-
3 ª	APCW2 CNC/Sub/Brij (1:1:1)	20	CNC (20)	20
4 ^a	APCW3 MCC/Sub/Brij (1:1:1)	20	Avicel (20)	20
5 ^b	APCW4 MCC/Sub/Brij (3:1:1)	20	Avicel (60)	20
6 ^b	APCW5 FNC/Sub/Brij (3:1:1)	20	FNC (60)	20
7 ^b	APCW6 MCC/Sub/Brij (3:1:3)	20	Avicel (60)	60

[a] Phosphate buffer 2 mL used. [b] Phosphate buffer 6 mL used.

General procedure for the synthesis of the racemic compounds.

In a microwave vial was added amine (*rac*)-**1** (0.5 mmol, 2 equiv), CH₂Cl₂ (2 mL) and butyryl chloride (26 mg, 0.25 mmol, 1 equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for 2 hours. Next 2mL of HCl (1.0 M) were added and the reaction was stirred for 5 minutes. The reaction was transferred to a separatory funnel, dilute with CH₂Cl₂ (50 mL), washed 3 times with HCl (1.0 M, 20 mL), H₂O, brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to give the pure racemic product (*rac*)-**3** without further purification.

In a microwave vial was added **APCW**, solvent (1 mL), amine (*rac*)-**1** (0.25 mmol, 1 equiv) and 2,2,2-trifluoroethyl butyrate **2** (85 mg, 0.5 mmol, 2 equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for the time reported in the table. The reaction mixture was directly purified by column chromatography (hexane: ethylacetate) to afford the desired product (*S*)-**3** in the reported yield and ee.

(*S*)-N-(1-phenylethyl)butyramide 3a: 23 mg, 48% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.29 (m, 4H), 7.28 – 7.24 (m, 1H), 5.69 (s, 1H), 5.26 – 5.04 (m, 1H), 2.21 – 2.10 (m, 2H), 1.66 (dt, *J* = 14.8, 7.4 Hz, 2H), 1.49 (d, *J* = 6.9 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 143.4, 128.8, 127.5, 126.3, 48.7, 38.9, 21.8, 19.3, 13.9 (s)ppm; $[\alpha]_D^{25}$ =-88.9 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 97/3, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 33.8 min, tr (minor enantiomer) = 28.7 min. HRMS (ESI): calculated for C₁₂H₁₈NO [M+H]⁺ 192.1383; found 192.1373.

(*S*)-N-(1-(naphthalen-1-yl)ethyl)butyramide 3b: 29 mg, 48% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 8.5 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.49 – 7.44 (m, 1H), 6.06 – 5.85 (m, 1H), 5.63 (s, 1H), 2.20 – 2.05 (m, 2H), 1.73 – 1.61 (m, 5H), 0.92 (t, *J* = 7.4 Hz, 3H). ppm; ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 138.4, 133.9, 131.2, 128.8, 128.4, 126.5, 125.9, 125.2, 123.6, 122.6, 44.5, 38.7, 20.7, 19.2, 13.78 ppm; $[\alpha]_D^{25}$ =-96.5 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (AMH-column,

n-hexane/i-PrOH = 98/2, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 39.6 min, tr (minor enantiomer) = 36.7 min. **HRMS (ESI):** calculated for C₁₆H₂₀NO [M+H]⁺ 242.1539; found 242.1532.

(*S*)-N-(1-(4-fluorophenyl)ethyl)butyramide 3c: 22mg, 42% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.03 (t, *J* = 8.6 Hz, 2H), 5.68 (s, 1H), 5.15 (p, *J* = 7.1 Hz, 1H), 2.17 (t, *J* = 7.5 Hz, 2H), 1.72 – 1.64 (m, 2H), 1.49 (d, *J* = 6.9 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H). ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 163.1, 161.2, 139.4, 127.93 (d, *J* = 8.0 Hz), 115.6, 115.46, 48.1, 38.9, 21.9, 19.3, 13.83ppm; [α]_D²⁵=-90.2 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ADH-column, n-hexane/i-PrOH = 95/5, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 14.8 min, tr (minor enantiomer) = 11.8 min. HRMS (ESI): calculated for C₁₂H₁₇FNO [M+H]⁺ 210.1289; found 210.1285.

(*S*)-N-(1-(p-tolyl)ethyl)butyramide 3d: 25 mg, 48% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 5.61 (s, 1H), 5.11 (p, *J* = 7.0 Hz, 1H), 2.33 (s, 3H), 2.14 (t, *J* = 7.5 Hz, 2H), 1.65 (dt, *J* = 11.1, 5.5 Hz, 2H), 1.47 (d, *J* = 6.9 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 140.6, 137.1, 129.5, 126.3, 48.5, 39.0, 21.8, 21.1, 19.3, 13.8 ppm; [α]_p²⁵=-115.3 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 95/5, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 13.6 min, tr (minor enantiomer) = 11.0 min. HRMS (ESI): calculated for C₁₃H₂₀FNO [M+H]⁺ 206.1539; found 206.1536.

(S)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)butyramide 3e: 20 mg, 37% yield; white solid; ¹H NMR **(500** MHz, CDCl₃) δ 7.29 (t, *J* = 4.5 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.15 – 7.09 (m, 1H), 5.66 (s, 1H), 5.32 – 5.12

(m, 1H), 2.88 – 2.73 (m, 2H), 2.21 (t, J = 7.4 Hz, 2H), 2.07 (dt, J = 7.8, 3.6 Hz, 1H), 1.89 – 1.80 (m, 3H), 1.78 – 1.68 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 143.4, 128.8, 127.5, 126.3, 48.7, 38.9, 21.8, 19.3, 13.9 ppm; $[\alpha]_D^{25}$ =-78.3 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, nhexane/i-PrOH = 95/5, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 22.6 min, tr (minor enantiomer) = 13.2 min. HRMS (ESI): calculated for C₁₄H₂₀NO [M+H]⁺ 218.1539; found 218.1537.

(*S*)-N-(4-phenylbutan-2-yl)butyramide 3f: 22 mg, 48% yield; white solid; ¹H NMR (500 MHz, CDCl₃) δ 5.17 (d, *J* = 6.8 Hz, 1H), 4.17 – 3.95 (m, 1H), 2.66 (d, *J* = 7.9 Hz, 2H), 2.10 (t, *J* = 7.4 Hz, 2H), 1.76 (dt, *J* = 9.9, 6.7 Hz, 2H), 1.71 – 1.60 (m, 2H), 1.17 (d, *J* = 6.3 Hz, 3H), 0.95 (dd, *J* = 7.4, 6.9 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 141.9, 128.6, 128.5, 126.0, 45.1, 39.1, 38.9, 32.7, 21.3, 19.4, 13.9. ppm; $[\alpha]_D^{25}$ =-42.2 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 94/6, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 22.7 min, tr (minor enantiomer) = 16.0 min. HRMS (ESI): calculated for C₁₄H₂₁NO [M+H]⁺ 220.1696; found 220.1691.

(S)-N-(1-phenylpropyl)butyramide 3g: 26 mg, 50% yield; transparent oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.33 – 7.23 (m, 3H), 5.77 (d, *J* = 6.4 Hz, 1H), 4.92 (q, *J* = 7.6 Hz, 1H), 2.18 (t, *J* = 7.4 Hz, 2H), 1.92 – 1.76 (m, 2H), 1.68 (ddd, *J* = 8.8, 7.1, 3.8 Hz, 2H), 0.93 (dt, *J* = 17.7, 7.4 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 142.4, 128.7, 127.4, 126.7, 54.8, 38.9, 29.2, 19.3, 13.9, 10.8 ppm; $[\alpha]_D^{25}$ =-84.5 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 95/5, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 19.5 min., tr (minor enantiomer) = 13.7 min. HRMS (ESI): calculated for C₁₃H₂₀NO [M+H]⁺ 206.1539; found 206.1549.

(S)-N-(2,3-dihydro-1H-inden-1-yl)butyramide 3h: 25 mg, 49% yield; yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.25 (ddd, *J* = 9.8, 6.5, 4.0 Hz, 4H), 5.84 (d, *J* = 6.8 Hz, 1H), 5.50 (q, *J* = 7.8 Hz, 1H), 2.98 (ddd, *J* = 15.9, 8.8, 3.8 Hz, 1H), 2.87 (dt, *J* = 16.1, 8.2 Hz, 1H), 2.60 (dtd, *J* = 11.7, 7.9, 3.8 Hz, 1H), 2.25 – 2.14 (m, 2H), 1.80 (ddd, *J* = 16.1, 12.9, 8.4 Hz, 1H), 1.76 – 1.65 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 143.3, 143.3, 127.9, 126.7, 124.8, 123.9, 54.5, 38.8, 34.1, 30.2, 19.3, 13.8 ppm; $[\alpha]_D^{25}$ =-49.7 (c=1.0, CHCl₃). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 95/5, λ = 210 nm, 1,0 ml/min) tr (major enantiomer) = 25.7 min., tr (minor enantiomer) = 19.5 min. HRMS (ESI): calculated for C₁₃H₁₈NO [M+H]⁺ 204.1383; found 204.1387.

Recycling of APCW6 catalyst (Table S2).

In a microwave vial was added **APCW6** (54 mg), 3-methyl 3-pentanol (2 mL), 1-(naphthalen-1-yl)ethan-1-amine (85 mg, 0.5 mmol, 1 equiv) and 2,2,2-trifluoroethyl butyrate (170 mg, 1.0 mmol, 2 equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for the time reported in the table. Next, dry diethylether was added to the vial and the reaction mixture was centrifuged 3 times collecting the supernatant after each cycle. The recycled catalyst was dried flushing nitrogen through the septum and used directly for the next reaction. The collected supernatant was concentrated under reduced pressure and the crude mixture was purified by column chromatography (hexane/ ethyl acetate 1:1, ethyl acetate: methanol 6:1) to afford (*S*)-**3b** and (*R*)-**1b** in the reported yield and ee.

Cycle	Time (h)	Yield 3b [%] ^b	Yield 1 b [%] ^b	Ee 3b [%] ^c	Ee 1b[%] ^c	Ed
0	22	39	56	96	99	259
1	22	41	49	95	99	206
2	22	51	49	94	99	170
3	22	42	49	97	94	235
4	22	46	49	96	96	194
5	23	45	49	96	94	175
6	22	42	51	96	85	133
7	22	38	54	98	70	208
8	27	38	54	98	68	203
9	43	40	58	97	76	151

Table S2. Recycling of the APCW6 catalyst for the KRs of racemic 1b.^a

[a] Reaction conditions: **1b** (0.5 mmol, 1equiv), **2** (1.0 mmol, 2 equiv), 3-methyl 3-pentanol (2 mL), **APCW6** MCC/Sub/Brij (3:1:3) (54 mg), room temperature. [b] Isolated yield. [c] Determined by chiral HPLC. [d] E = Enantiomeric ratio, selectivity factor as determined by Chen et al.

Procedure for monitoring the formation of amide (*R*)-3a as a function of time for the amidation of (*rac*)-2a using CALB and modified CALB with different structural components in toluene.

In a microwave vial were added the catalyst (0.996 mg of lyophilized subtilisin content), 2,4-Dimethyl-3-pentanol (1 mL), amine (*rac*)-**1a** (0.25 mmol, 1 equiv) and 2,2,2-trifluoroethyl butyrate **2** (85 mg, 0.5 mmol, 2 equiv). The vial was capped, flushed with nitrogen and the reaction was stirred at room temperature. At short intervals a small aliquot was taken from the crude mixture and analyzed by ¹H-NMR to determine the degree of conversion for amide (*S*)-**3a** as function of time (see figure 3 in the manuscript).

General procedure for the racemization of (S)-1 catalyzed by Shvo catalyst.

In a microwave vial was added Shvo catalyst, Na₂CO₃ (29 mg, 0.275mmol, 1.1 equiv) 2,4-Dimethyl-3pentanol (1 mL), amine (S)-1 (0.25 mmol, 1 equiv). The vial was sealed and an argon balloon was connected. The reaction was stirred at 90°C for the time reported in the Table S3. Next, butyryl chloride was added to the reaction mixture and the solution was stirred for additional 3 hours. The solution was diluted with ethyl acetate, washed with sodium bicarbonate, water, brine and the organic phase was dried over sodium sulfate. The crude mixture was concentrated under vacuum and directly analyzed by HPLC.

NH₂ ▼	Shvo cat.	N L	IH ₂	
R (S)-1	Na ₂ CO _{3,} 2,4-Dimethy Ar, 90C ^o	I-3-pentanol		
Entry	R	Catalyst [mol%]	Time [h]	Ee 1 [%] ^b
1	1-Naft	4.4	22	94
2	1-Naft	18.4	23	74
3	Ph	4.4	24	67

Table S3. Screening for the racemization catalyzed by SHVO catalyst.

[a] Reaction conditions: 1 (0.25 mmol, 1equiv), 2,4-Dimethyl-3-pentanol (1 mL), Shvo catalyst, Na₂CO₃
(0.275 mmol, 1.1 equiv), 90°C, Ar. [b] Determined by chiral HPLC.

General procedure for the DKR of (*rac*)-catalyzed by APCW4 and Shvo catalyst.

In a microwave vial was added the **APCW4**, Shvo catalyst, 2,4-Dimethyl-3-pentanol (1 mL), amine rac-**1** (0.25 mmol, 1 equiv), 2,2,2-trifluoroethyl butyrate **2** (85 mg, 0.5 mmol, 2 equiv). and Na₂CO₃ The vial was sealed and an argon balloon was connected. The reaction was stirred at 90°C for the time reported in Table 4 of the manuscript. The reaction mixture was directly purified by column chromatography (hexane/ ethyl acetate 1:1) to afford the corresponding amide **3** in the reported yield and ee.

Figure S1. Racemic amide 3c.

Figure S2. HPLC of amide (S)-3c.

m/z	z	Abund	Formula	Ion
210.1285	1	457623.56	C12H17FNO	(M+H)+
211.1316	1	62820.43	C12H17FNO	(M+H)+
212.1344	1	4787.97	C12H17FNO	(M+H)+
213.1356	1	247.56	C12H17FNO	(M+H)+
232.1099	1	47485.97	C12H16FNNaO	(M+Na)+
233.1136	1	6217.46	C12H16FNNaO	(M+Na)+
234.118	1	629.28	C12H16FNNaO	(M+Na)+
248.0846	1	1995.39	C12H16FKNO	(M+K)+
249.0893	1	238.35	C12H16FKNO	(M+K)+
250.0826	1	141.64	C12H16FKNO	(M+K)+

S14

Figure S3. Racemic amide 3a.

0

Figure S4. HPLC of amide (S)-3a.

Sample Name

Position

User Name

DA Method

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment

LD541Ph.d Sample QTOF ACgroup_new.m

LD541Ph Vial 1 QTOF-PC\admin Acquired Time 2020-07-28 12:52:18 Default.m

Acquisition SW Version

6200 series TOF/6500 series Q-TOF B.05.00 (B5042.2)

Compounds

x10 6 Cpd 1: C12 H17 N O: + FBF Spectrum (0.948-1.059 min) LD541Ph.d Subtract 1.4 1.2 1 0.8 0.6 0.4 214.1191 (M+Na)+ 230.0935 0.2 (M+K)+ 0

194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 Counts vs. Mass-to-Charge (m/z)

Peak List			oounio	10.11000 10 01101
m/z	z	Abund	Formula	Ion
192.1373	1	1354116.75	C12H18NO	(M+H)+
193.1409	1	182544.25	C12H18NO	(M+H)+
194.1435	1	14083.26	C12H18NO	(M+H)+
195.1452	1	836.11	C12H18NO	(M+H)+
214.1191	1	141593.45	C12H17NNaO	(M+Na)+
215.1225	1	19619.62	C12H17NNaO	(M+Na)+
216.1256	1	1480.87	C12H17NNaO	(M+Na)+
230.0935	1	6744.09	C12H17KNO	(M+K)+
231.0975	1	967.75	C12H17KNO	(M+K)+
232.0924	1	595.24	C12H17KNO	(M+K)+

Agilent Technologies

Page 1 of 1

Figure S5. Racemic amide 3b.

Figure S6. HPLC of amide (S)-3b.

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment LD580Naft.d Sample QTOF ACgroup_new.m Sample Name LD580 Position Vial 1 User Name QTOF Acquired Time 2020-DA Method Defau

LD580Naft Vial 1 QTOF-PC\admin 2020-07-21 11:30:38 Default.m

Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.00 (B5042.2)

244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 Counts vs. Mass-to-Charge (m/z)

Peak List			oouno torn	
m/z	z	Abund	Formula	Ion
242.1532	1	684500.31	C16H20NO	(M+H)+
243.1565	1	119363.06	C16H20NO	(M+H)+
244.1592	1	11337.36	C16H20NO	(M+H)+
245.1626	1	1027.8	C16H20NO	(M+H)+
264.1347	1	101224.6	C16H19NNaO	(M+Na)+
265.1378	1	17841.88	C16H19NNaO	(M+Na)+
266.1407	1	1832.74	C16H19NNaO	(M+Na)+
280.1087	1	10313.37	C16H19KNO	(M+K)+
281.1124	1	1824.41	C16H19KNO	(M+K)+
282.109	1	951.53	C16H19KNO	(M+K)+

Page 1 of 1

Figure S7. Racemic amide 3e.

Figure S8. HPLC of amide (S)-3e.

Sample Name

Acquired Time

Position

User Name

DA Method

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment

RR-2-67Tetra.d
Sample
QTOF
ACgroup_new.m
Currence.

RR-2-67Tetra Vial 1 QTOF-PC\admin 2020-07-21 11:23:42 Default.m

Acquisition SW Version

6200 series TOF/6500 series Q-TOF B.05.00 (B5042.2)

220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 Counts vs. Mass-to-Charge (m/z)

			Coun	5 vs. mass-to-Cha
Peak List				
m/z	z	Abund	Formula	Ion
218.1537	1	462253.09	C14H20NO	(M+H)+
219.1568	1	71438.23	C14H20NO	(M+H)+
220.1597	1	6684.34	C14H20NO	(M+H)+
221.164	1	420.41	C14H20NO	(M+H)+
240.1349	1	99093.78	C14H19NNaO	(M+Na)+
241.138	1	15785.82	C14H19NNaO	(M+Na)+
242.142	1	1467.16	C14H19NNaO	(M+Na)+
256.1093	1	3041.77	C14H19KNO	(M+K)+
257.1158	1	513.73	C14H19KNO	(M+K)+
258.1095	1	209.25	C14H19KNO	(M+K)+

Agilent Technologies

Page 1 of 1

- 170	- 160	- 150	- 140	- 130	- 120	- 110	- 100	06 -	- 80	- 70	- 60	- 50	- 40	- 30	- 20	- 10	0
																	actubulanta
																	-
- 13.85 ^ 13.85	~																
28.12 ~ ~ 21.13															•		
																	-
10.95 —	-												_				
74.84	-												_				
																	Allowardovidenta
																	Althilipping .
								-									la l
																	-
																	laurta al la a
74.021 — 75.921 —	-									-							
72.041 — 140.57	-																
																	-
00'7/1	_																
00 221	-															_	Industry with the
																	-
																	langadi ninga
																	Andrive and the second

Figure S9. Racemic amide 3d.

Figure S10. HPLC of amide (S)-3d.

Peak List			Counto Vo. 1	nuss-to-onuige (i
m/z	z	Abund	Formula	Ion
206.1536	1	393800.66	C13H20NO	(M+H)+
207.1567	1	56523.54	C13H20NO	(M+H)+
208.1595	1	4853.72	C13H20NO	(M+H)+
210.1218	1	537.06	C13H17NNa	(M+Na)+[-H2O]
228.1348	1	70438.8	C13H19NNaO	(M+Na)+
229.138	1	10452.28	C13H19NNaO	(M+Na)+
230.1401	1	903.93	C13H19NNaO	(M+Na)+
244.1095	1	3997.9	C13H19KNO	(M+K)+
245.1137	1	696.93	C13H19KNO	(M+K)+
246.1085	1	292.46	C13H19KNO	(M+K)+

Agilent Technologies

Figure S11. Racemic amide 3f.

Figure S12. HPLC of amide (S)-3f.

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment RR-2-64Aliph.d Sample QTOF ACgroup_new.m Sample NameRPositionVUser NameQAcquired Time2DA MethodD

RR-2-64Aliph Vial 1 QTOF-PC\admin 2020-07-21 11:01:36 Default.m

Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.00 (B5042.2)

2	242.1505	
5-		

222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 Counts vs. Mass-to-Charge (m/z)

Peak List				
m/z	z	Abund	Formula	Ion
220.1691	1	633188.69	C14H22NO	(M+H)+
221.1725	1	98736.27	C14H22NO	(M+H)+
222.1754	1	8725.76	C14H22NO	(M+H)+
223.1771	1	692.21	C14H22NO	(M+H)+
242.1505	1	83385.63	C14H21NNaO	(M+Na)+
243.1535	1	13361.52	C14H21NNaO	(M+Na)+
244.1565	1	1259.79	C14H21NNaO	(M+Na)+
258.1246	1	3294.03	C14H21KNO	(M+K)+
259.1305	1	679.18	C14H21KNO	(M+K)+
260.124	1	273.89	C14H21KNO	(M+K)+

Agilent Technologies

```
Page 1 of 1
```


- 1700	- 1600	- 1500	- 1400	- 1300	- 1200	- 1100	- 1000	006 -	- 800	- 700	- 600	- 500	- 400	- 300	- 200	- 100	0	100	
																	(Minpikanishi Minariw		- 10
																	part (chevrolyne)		- 0
68.01	·~																a lived water strange and		- 10
28.61 28.61	[-> [->																(Antaration of a		- 50
22.99	z —																nutral particular		- 8
96.88	ē —																ninititation and		- 6
28.45	i —																And a state of the second		- 20
																	des la construction de la construcción de la construcción de la construcción de la construcción de la construcc		- 99 - 0
											-						open and and a		- 2 - 8
																	la (paper e (person e film		- 06
																	n ranangalana		100 (ppm)
																	opul current factor		- 11 - 11 - 11
÷/'071	ſ																Anterkalanderkantur		120
62'221 62'221 82'821									Ξ								all fully and the		- 130
24,241	r																NAM Shink was		- 140
																	area a frequencia		. 150
																	no haint an		- 160
48.271	ſ —																upurtuknya juliyee		- 12
																	andandanana		- 31
																	hythin you by beauting		- 00
																	HANNA MANANA MANA		210 2
																	BHI//Wisteries		-

Figure S13. Racemic amide 3g.

Figure S14. HPLC of amide (S)-3g.

Compounds

Peak List

m/z	z	Abund	Formula	Ion
206.1549	1	142302.25	C13H20NO	(M+H)+
207.158	1	19824.5	C13H20NO	(M+H)+
208.1613	1	1641.99	C13H20NO	(M+H)+
228.1369	1	20929.16	C13H19NNaO	(M+Na)+
229.1409	1	3730.46	C13H19NNaO	(M+Na)+
230.1418	1	705.25	C13H19NNaO	(M+Na)+

- - 1600	- 1500	- 1400	- 1300	- 1200	- 1100	- 1000	- 900	- 800	- 700	- 600	- 500	- 400	- 300	- 200	- 100	0	
													•				_
																A MANAGAMAN NA	- 7
																- the state of the	
62.51 —										_							- 9
82.01 —																	- 2
£2.0£ -⁄_																notify/compare	- 6
18.85 ~ 51.45 ~																	- 04
																land of the second	
12.42										-							
																a reproduction for the second	
																-	
																raptilitite	- 0
																-	- 6
																unite and a factor of the	- 9
																and property and search	
86.521 -7																o statistical constants	- 001
42.921 → 47.921 →										=							- 001
																an de la faire de la faire	
24.242 143.35													-			wy dweinig lagrad	
																and a second second second	
																an individual and a second	- 1
08.271 —																	- 1
																na lun și Welsenie	- 181
																ni vezna na serva	- 101
																a here internet and ur	
																na pala secondario da secondario d	
																	-

Figure S15. Racemic amide 3h.

Figure S16. HPLC of amide (S)-3h.

Data Filename	LD1255b.d	Sample Name	Unavailable
Sample Type	Unavailable	Position	Unavailable
Instrument Name	Unavailable	User Name	Unavailable
Acq Method		Acquired Time	Unavailable
IRM Calibration Status	Success	DA Method	Default.m
Comment	Sample information is unavailable	-	

Compounds

m/z 205.1424 2873.13 C13H18NO (M+H)+ 1 206.1407 1 C13H18NO 516.38 (M+H)+