Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of (S)-amides

Luca Deiana, Abdolrahim A. Rafi, Jan-E. Bäckvall, Armando Córdova

Table of Contents

\qquadGeneral methodsS2
Experimental procedures. S3
All spectra S10

General methods:

Chemicals and solvents were purchased from commercial suppliers and used as received or purified by standards techniques. Avicel ${ }^{\circ}$ PH-101 ($\sim 50 \mu \mathrm{~m}$ particle size), Proteinase bacterial (Type XXIV, 7.014.0 units/mg solid, lyophilized powder), Brij ${ }^{\circ}$ C10 (average Mn ~683) were purchased from Aldrich and used as received. Dry toluene was column-dried directly before use by a VAC: Solvent Purifier system. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance $500(500 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuterium incorporation as the internal standard (CDCI3: $\delta 7.26 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $q=q u a r t e t, ~ b r=b r o a d, ~ m=m u l t i p l e t$), and coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 500 (125.8 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCI3: $\delta 77.26$ ppm). Highresolution mass spectrometry was performed on an Agilent Technologies 6520- Q-TOF ESI-MS (positive mode) at the Mid-Sweden University Mass Spectrometry Facility. Enantiomeric ratios were determined by HPLC (Chiral Agilent Technologies Chiralpak OD-H, OJ-H, AS-H, AM-H column (4.6 mm x 250 mm)) in comparison with authentic racemic materials. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter. Unless otherwise noted, all reactions were performed with distilled solvents in oven-dried $\left(160^{\circ} \mathrm{C}\right)$ glassware. X-ray photoelectron spectroscopy was used to determine the structure and oxidation states of the Pd nanoparticles. Elemental analyses on the Pd content were carried out by Medac LTD Analytical and chemical consultancy services (United Kingdom) by ICP-OES. Infrared spectra were recorded by Thermo Scientific NICOLET 6700 FT-IR, Smart orbit, Diamond 30000$200 \mathrm{~cm}^{-1}$.

Self-assembly of APCW catalyst.

In a plastic beaker was added cellulose, sodium phosphate buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.2$) and Brij C10. The suspension was stirred with a spatula until completely solubilization of brij. Next subtilisin (20 mg) was added, the mixture was stirred with a spatula until completely solubilization of the enzyme and rapidly frozen in liquid nitrogen. The catalyst was lyophilized for 70 hours to give a solid white foam. Cellulose/subtilisin was stored at $-20^{\circ} \mathrm{C}$.

Table S1. Reagents for the assembling of APCW catalyst.

Subtilisin + Cellulose + Brij $\xrightarrow[\text { Freeze dried }]{$| Phosphate |
| :--- |
| Buffer |
| $(0.1 \mathrm{M}, \mathrm{pH}=7.2,2 \mathrm{~mL})$ |$}$ APCW

Entry	Catalyst	Subtilisin $[\mathrm{mg}]$	Cellulose $[\mathrm{mg}]$	Brij [mg]
$1^{\text {a }}$	Sub/Brij (1:1)	20	-	20
$2^{\text {a }}$	APCW1 CNC/Sub/Brij (1:1:0)	20	CNC (20)	-
$3^{\text {a }}$	APCW2 CNC/Sub/Brij (1:1:1)	20	CNC (20)	20
$4^{\text {a }}$	APCW3 MCC/Sub/Brij (1:1:1)	20	Avicel (20)	20
$5^{\text {b }}$	APCW4 MCC/Sub/Brij (3:1:1)	20	Avicel (60)	20
$6^{\text {b }}$	APCW5 FNC/Sub/Brij (3:1:1)	20	FNC (60)	20
$7^{\text {b }}$	APCW6 MCC/Sub/Brij (3:1:3)	20	Avicel (60)	60

[a] Phosphate buffer 2 mL used. [b] Phosphate buffer 6 mL used.

General procedure for the synthesis of the racemic compounds.

In a microwave vial was added amine (rac)-1 (0.5 mmol , 2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and butyryl chloride ($26 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for 2 hours. Next 2 mL of $\mathrm{HCl}(1.0 \mathrm{M})$ were added and the reaction was stirred for 5 minutes. The reaction was transferred to a separatory funnel, dilute with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed 3 times with $\mathrm{HCl}(1.0 \mathrm{M}, 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give the pure racemic product (rac)-3 without further purification.

General procedure for the kinetic resolution of rac-1a catalyzed by APCW.

In a microwave vial was added APCW, solvent (1 mL), amine (rac) $\mathbf{- 1}$ ($0.25 \mathrm{mmol}, 1$ equiv) and 2,2,2trifluoroethyl butyrate 2 ($85 \mathrm{mg}, 0.5 \mathrm{mmol}, 2$ equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for the time reported in the table. The reaction mixture was directly purified by column chromatography (hexane: ethylacetate) to afford the desired product $(S)-3$ in the reported yield and ee.

(S)-N-(1-phenylethyl)butyramide 3a: $23 \mathrm{mg}, 48 \%$ yield; white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ $-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.26-5.04(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dt}, J=$ $14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.49(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.1,143.4,128.8,127.5,126.3,48.7,38.9,21.8,19.3,13.9(\mathrm{~s}) \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{25}=-88.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=97 / 3, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}$) tr (major enantiomer) $=33.8$ $\min , \operatorname{tr}($ minor enantiomer $)=28.7$ min. $\mathbf{H R M S}(E S I)$: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$192.1383; found 192.1373.

(S)-N-(1-(naphthalen-1-yl)ethyl)butyramide 3b: 29 mg , 48% yield; white solid; ${ }^{1} \mathrm{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.49-$ $7.44(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,138.4,133.9,131.2,128.8,128.4,126.5,125.9,125.2$, $123.6,122.6,44.5,38.7,20.7,19.2,13.78 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{25}=-96.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (AMH-column,
n-hexane/i- $\mathrm{PrOH}=98 / 2, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}$) tr (major enantiomer) $=39.6 \mathrm{~min}, \mathrm{tr}$ (minor enantiomer) $=36.7$ min. $\mathbf{H R M S}$ (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$242.1539; found 242.1532.

(S)-N-(1-(4-fluorophenyl)ethyl)butyramide 3c: $22 \mathrm{mg}, 42 \%$ yield; white solid; ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.30(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,163.1,161.2,139.4,127.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 115.6,115.46,48.1,38.9,21.9,19.3$, 13.83ppm; $[\alpha]_{\mathrm{D}}{ }^{25}=-90.2$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ADH-column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5, \lambda=210 \mathrm{~nm}, 1,0$ $\mathrm{ml} / \mathrm{min}) \operatorname{tr}($ major enantiomer $)=14.8 \mathrm{~min}, \operatorname{tr}($ minor enantiomer $)=11.8 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$210.1289; found 210.1285.

(S)-N-(1-(p-tolyl)ethyl)butyramide 3d: $25 \mathrm{mg}, 48 \%$ yield; white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 87.20 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{dt}, J=11.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,140.6,137.1,129.5,126.3,48.5,39.0,21.8,21.1,19.3,13.8 \mathrm{ppm} ;[\alpha]_{\mathrm{D}}{ }^{25}=-$ 115.3 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH -column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}$) tr (major enantiomer) $=13.6 \mathrm{~min}, \operatorname{tr}($ minor enantiomer $)=11.0 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{20}$ FNO $[\mathrm{M}+\mathrm{H}]^{+} 206.1539$; found 206.1536 .

(S)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)butyramide 3e: $20 \mathrm{mg}, 37 \%$ yield; white solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.32-5.12$
$(\mathrm{m}, 1 \mathrm{H}), 2.88-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dt}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 3 \mathrm{H})$, $1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,143.4,128.8,127.5$, 126.3, 48.7, 38.9, 21.8, 19.3, $13.9 \mathrm{ppm} ;[\alpha]_{D}{ }^{25}=-78.3$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, nhexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}) \operatorname{tr}$ (major enantiomer) $=22.6 \mathrm{~min}, \operatorname{tr}$ (minor enantiomer) $=13.2 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$218.1539; found 218.1537.

(S)-N-(4-phenylbutan-2-yl)butyramide $3 \mathrm{f}: 22 \mathrm{mg}, 48 \%$ yield; white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{dt}, J=$ $9.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{dd}, J=7.4,6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,141.9,128.6,128.5,126.0,45.1,39.1,38.9,32.7,21.3,19.4,13.9$. ppm; $[\alpha]_{\mathrm{D}}{ }^{25}=-42.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=94 / 6, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}$) tr (major enantiomer) $=22.7 \mathrm{~min}, \operatorname{tr}($ minor enantiomer $)=16.0 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$220.1696; found 220.1691 .

(S)-N-(1-phenylpropyl)butyramide $\mathbf{3 g}$: $26 \mathrm{mg}, 50 \%$ yield; transparent oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{ddd}, J=8.8,7.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{dt}, J=17.7,7.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 172.3,142.4,128.7,127.4,126.7,54.8,38.9,29.2,19.3,13.9,10.8 \mathrm{ppm} ;$ $[\alpha]_{D}{ }^{25}=-84.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5, \lambda=210 \mathrm{~nm}, 1,0 \mathrm{ml} / \mathrm{min}$) tr (major enantiomer) = 19.5 min., $\operatorname{tr}($ minor enantiomer $)=13.7 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}$206.1539; found 206.1549.

(S)-N-(2,3-dihydro-1H-inden-1-yl)butyramide 3h: $25 \mathrm{mg}, 49 \%$ yield; yellow solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.C D C l_{3}\right) \delta 7.25(d d d, J=9.8,6.5,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J$ $=15.9,8.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dt}, J=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dtd}, J=11.7,7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14$ $(\mathrm{m}, 2 \mathrm{H}), 1.80(\mathrm{ddd}, J=16.1,12.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 172.8,143.3,143.3,127.9,126.7,124.8,123.9,54.5,38.8,34.1,30.2,19.3,13.8$ ppm; $[\alpha]_{D}{ }^{25}=-49.7$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/ $\mathrm{i}-\mathrm{PrOH}=95 / 5, \lambda=210 \mathrm{~nm}, 1,0$ $\mathrm{ml} / \mathrm{min}$) tr (major enantiomer) $=25.7 \mathrm{~min} ., \operatorname{tr}($ minor enantiomer $)=19.5 \mathrm{~min}$. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$204.1383; found 204.1387.

Recycling of APCW6 catalyst (Table S2).

In a microwave vial was added APCW6 (54 mg), 3-methyl 3-pentanol (2 mL), 1-(naphthalen-1-yl)ethan-1-amine ($85 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv) and 2,2,2-trifluoroethyl butyrate ($170 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ equiv). The vial was sealed and flushed with nitrogen. The reaction was stirred at room temperature for the time reported in the table. Next, dry diethylether was added to the vial and the reaction mixture was centrifuged 3 times collecting the supernatant after each cycle. The recycled catalyst was dried flushing nitrogen through the septum and used directly for the next reaction. The collected supernatant was concentrated under reduced pressure and the crude mixture was purified by column chromatography (hexane/ ethyl acetate 1:1, ethyl acetate: methanol 6:1) to afford (S) - $\mathbf{3 b}$ and $(R)-\mathbf{1 b}$ in the reported yield and ee.

Table S2. Recycling of the APCW6 catalyst for the KRs of racemic 1b. ${ }^{\text {a }}$

Cycle	Time (h)	Yield 3b [\%] $^{\text {b }}$	Yield 1b [\%] $^{\text {b }}$	Ee $\mathbf{3 b}[\%]^{\text {c }}$	Ee $\mathbf{1 b}[\%]^{\text {c }}$	$\mathrm{E}^{\text {d }}$
0	22	39	56	96	99	259
1	22	41	49	95	99	206
2	22	51	49	94	99	170
3	22	42	49	97	94	235
4	22	46	49	96	96	194
5	23	45	49	96	94	175
6	22	42	51	96	85	133
7	22	38	54	98	70	208
8	27	38	58	97	68	203
9	43	40			76	151

[a] Reaction conditions: 1b (0.5 mmol , 1equiv), $\mathbf{2}(1.0 \mathrm{mmol}, 2$ equiv), 3-methyl 3-pentanol (2 mL), APCW6 MCC/Sub/Brij (3:1:3) (54 mg), room temperature. [b] Isolated yield. [c] Determined by chiral HPLC. [d] E = Enantiomeric ratio, selectivity factor as determined by Chen et al.

Procedure for monitoring the formation of amide (R)-3a as a function of time for the amidation of ($r a c$)-2a using CALB and modified CALB with different structural components in toluene.

In a microwave vial were added the catalyst (0.996 mg of lyophilized subtilisin content), 2,4-Dimethyl-3-pentanol (1 mL), amine (rac)-1a (0.25 mmol , 1 equiv) and 2,2,2-trifluoroethyl butyrate $\mathbf{2}$ ($85 \mathrm{mg}, 0.5$ mmol, 2 equiv). The vial was capped, flushed with nitrogen and the reaction was stirred at room temperature. At short intervals a small aliquot was taken from the crude mixture and analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the degree of conversion for amide (S) - 3 a as function of time (see figure 3 in the manuscript).

General procedure for the racemization of $(S)-1$ catalyzed by Shvo catalyst.

In a microwave vial was added Shvo catalyst, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($29 \mathrm{mg}, 0.275 \mathrm{mmol}, 1.1$ equiv) 2,4-Dimethyl-3pentanol (1 mL), amine (S) -1 (0.25 mmol , 1 equiv). The vial was sealed and an argon balloon was connected. The reaction was stirred at $90^{\circ} \mathrm{C}$ for the time reported in the Table S3. Next, butyryl chloride was added to the reaction mixture and the solution was stirred for additional 3 hours. The solution was diluted with ethyl acetate, washed with sodium bicarbonate, water, brine and the organic phase was dried over sodium sulfate. The crude mixture was concentrated under vacuum and directly analyzed by HPLC.

Table S3. Screening for the racemization catalyzed by SHVO catalyst.

	Shvo cat. $\mathrm{Na}_{2} \mathrm{CO}_{3}, 2,4-\mathrm{D}$ $\mathrm{Ar}, 90{ }^{\circ}$	$\xrightarrow{\longrightarrow}$		
Entry	R	Catalyst [mol\%]	Time [h]	$\begin{aligned} & \text { Ee } 1 \\ & {[\%]^{b}} \end{aligned}$
1	1-Naft	4.4	22	94
2	1-Naft	18.4	23	74
3	Ph	4.4	24	67

[a] Reaction conditions: 1 (0.25 mmol , 1equiv), 2,4-Dimethyl-3-pentanol (1 mL), Shvo catalyst, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.275 \mathrm{mmol}, 1.1$ equiv), $90^{\circ} \mathrm{C}$, Ar. [b] Determined by chiral HPLC.

General procedure for the DKR of (rac)-catalyzed by APCW4 and Shvo catalyst.

In a microwave vial was added the APCW4, Shvo catalyst, 2,4-Dimethyl-3-pentanol (1 mL), amine rac1 ($0.25 \mathrm{mmol}, 1$ equiv), 2,2,2-trifluoroethyl butyrate $\mathbf{2}$ ($85 \mathrm{mg}, 0.5 \mathrm{mmol}, 2$ equiv). and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ The vial was sealed and an argon balloon was connected. The reaction was stirred at $90^{\circ} \mathrm{C}$ for the time reported in Table 4 of the manuscript. The reaction mixture was directly purified by column chromatography (hexane/ ethyl acetate 1:1) to afford the corresponding amide $\mathbf{3}$ in the reported yield and ee.

Figure S1. Racemic amide 3c.

\#
Time
Area Height Width Area\% Symmetry 1 11.838 962.1 23.8 0.4856 3.823 0.572 2 14.81 24205.9 349.2 0.8587 96.177 0.317

Figure S2. HPLC of amide (S)-3c.

Qualitative Analysis Report

Data Filename	RR-2-68F.d	Sample Name	Unavailable
Sample Type	Unavailable	Position	Unavailable
Instrument Name	Unavailable	User Name	Unavailable
Acq Method		Acquired Time	Unavailable
IRM Calibration Status	Success	DA Method	Default.m
Comment	Sample information is unavailable		

Compounds

m / z	z	Abund	Formula	Ion
210.1285	1	457623.56	C12H17FNO	(M+H)+
211.1316	1	62820.43	C12H17FNO	(M+H) +
212.1344	1	4787.97	C12H17FNO	(M+H)+
213.1356	1	247.56	C12H17FNO	$(\mathrm{M}+\mathrm{H})+$
232.1099	1	47485.97	C12H16FNNaO	(M+Na) +
233.1136	1	6217.46	C 12 H 16 FNNaO	(M+Na) +
234.118	1	629.28	C12H16FNNaO	(M+Na) +
248.0846	1	1995.39	C12H16FKNO	(M+K) +
249.0893	1	238.35	C12H16FKNO	(M+K) +
250.0826	1	141.64	C12H16FKNO	(M+K)+

$\#$	Time	Area	Height	Width	Area\%	ymmetis
1	27.506	51365.5	4124	1.469	50.142	0.4
2	32772	51074.5	427.8	1.4128	49.958	0.48

Figure S3. Racemic amide 3a.

Figure S4. HPLC of amide (S)-3a.

Qualitative Analysis Report

Data Filename	LD541Ph.d	Sample Name	LD541Ph
Sample Type	Sample	Position	Vial 1
Instrument Name	QTOF	User Name	QTOF-PCladmin
Acq Method	ACgroup_new.m	Acquired Time	2020-07-28 12:52:18
IRM Calibration Status	Success	DA Method	Default.m
Comment Acquisition SW 6200 series TOF/6500 series Version Q-TOF B.05.00 (B5042.2)			

Compounds

\#
Time
Area Height Width Area\% Symmetry 1 34.249 17084.2 204 1.3955 49.405 0.358 2 38.083 17495.5 182.6 1.5969 50.595 0.383

Figure S5. Racemic amide 3b.

Figure S6. HPLC of amide (S)-3b.

Qualitative Analysis Report

Data Filename	LD580Naft.d	Sample Name	LD580Naft
Sample Type	Sample	Position	Vial 1
Instrument Name	QTOF	User Name	QTOF-PCladmin
Acq Method	ACgroup_new.m	Acquired Time	2020-07-21 11:30:38
IRM Calibration Status	Success	DA Method	Default.m
Comment			
Acquisition SW	6200 series TOF/6500 series		
Version	Q-TOF B.05.00 (B5042.2)		

Compounds

Peak List

| $\boldsymbol{m} / \boldsymbol{z}$ | F | Fbund | Formula | Ion |
| ---: | ---: | ---: | ---: | :--- | :--- |
| 242.1532 | 1 | 684500.31 | C16H20NO | $(\mathrm{M}+\mathrm{H})+$ |
| 243.1565 | 1 | 119363.06 | C 16 H 20 NO | $(\mathrm{M}+\mathrm{H})+$ |
| 244.1592 | 1 | 11337.36 | C 16 H 20 NO | $(\mathrm{M}+\mathrm{H})+$ |
| 245.1626 | 1 | 1027.8 | C 16 H 20 NO | $(\mathrm{M}+\mathrm{H})+$ |
| 264.1347 | 1 | 101224.6 | C 16 H 19 NNaO | $(\mathrm{M}+\mathrm{Na})+$ |
| 265.1378 | 1 | 17841.88 | C 16 H 19 NNaO | $(\mathrm{M}+\mathrm{Na})+$ |
| 266.1407 | 1 | 1832.74 | C 16 H 19 NNaO | $(\mathrm{M}+\mathrm{Na})+$ |
| 280.1087 | 1 | 10313.37 | C 16 H 19 KNO | $(\mathrm{M}+\mathrm{K})+$ |
| 281.1124 | 1 | 1824.41 | C 16 H 19 KNO | $(\mathrm{M}+\mathrm{K})+$ |
| 282.109 | 1 | 951.53 | C 16 H 19 KNO | $(\mathrm{M}+\mathrm{K})+$ |

\qquad

\#	Time	Area	Height	Width	Area\%	
1	12.587	15140.7	270.6	0.6787	49.941	0.506
2	20.997	15176.7	207.7	0.8726	50.059	0.514

Figure S7. Racemic amide 3e.

Figure S8. HPLC of amide (S)-3e.

Qualitative Analysis Report

Data Filename	RR-2-67Tetra.d	Sample Name	RR-2-67Tetra
Sample Type	Sample	Position	Vial 1
Instrument Name	QTOF	User Name	QTOF-PCladmin
Acq Method	ACgroup_new.m	Acquired Time	2020-07-21 11:23:42
IRM Calibration Status	Success	DA Method	Default.m
Comment			
Acquisition SW	6200 series TOF/6500 series		
Version	Q-TOF B.05.00 (B5042.2)		

Compounds

Peak List

m/z	z	Abund	Formula	Ion
218.1537	1	462253.09	C14H20NO	(M+H)+
219.1568	1	71438.23	C14H20NO	(M+H)+
220.1597	1	6684.34	C14H20NO	(M+H)+
221.164	1	420.41	C14H20NO	(M+H)+
240.1349	1	99093.78	C14H19NNaO	($\mathrm{M}+\mathrm{Na}$) +
241.138	1	15785.82	C14H19NNaO	(M+Na)+
242.142	1	1467.16	C14H19NNaO	($\mathrm{M}+\mathrm{Na}$) +
256.1093	1	3041.77	C14H19KNO	(M+K) +
257.1158	1	513.73	C14H19KNO	(M+K) +
258.1095	1	209.25	C14H19KNO	(M+K)+

Figure S9. Racemic amide 3d.

Figure S10. HPLC of amide (S)-3d.

Qualitative Analysis Report

Data Filename	RR-2-69Me.d	Sample Name	RR-2-69Me
Sample Type	Sample	Position	Vial 1
Instrument Name	QTOF	User Name	QTOF-PCladmin
Acq Method	ACgroup_new.m	Acquired Time	2020-07-21 11:38:40
IRM Calibration Status	Success	DA Method	Default.m
Comment			
Acquisition SW	6200 series TOF/6500 series		
Version	Q-TOF B.05.00 (B5042.2)		

Compounds

Peak List

m/z	z	Abund	Formula	Ion
206.1536	1	393800.66	C13H20NO	(M+H)+
207.1567	1	56523.54	C13H20NO	(M+H)+
208.1595	1	4853.72	C13H20NO	(M+H)+
210.1218	1	537.06	C 13 H 17 NNa	$(\mathrm{M}+\mathrm{Na})+[-\mathrm{H} 2 \mathrm{O}]$
228.1348	1	70438.8	C13H19NNaO	(M+Na) +
229.138	1	10452.28	C 13 H 19 NNaO	$(\mathrm{M}+\mathrm{Na})+$
230.1401	1	903.93	C 13 H 19 NNaO	(M+Na) +
244.1095	1	3997.9	C13H19KNO	(M+K) +
245.1137	1	696.93	C13H19KNO	(M+K)+
246.1085	1	292.46	C13H19KNO	(M+K)+

\#	Time	Area	Height	Width	Area\%	
1	15.574	65178.2	993.9	0.7731	49.841	0.532
2	22.567	65593.1	736.7	1.0507	50.159	0.532

Figure S11. Racemic amide $\mathbf{3 f}$.

Figure S12. HPLC of amide (S)-3f.

Qualitative Analysis Report

Data Filename	RR-2-64Aliph.d	Sample Name	RR-2-64Aliph
Sample Type	Sample	Position	Vial 1
Instrument Name	QTOF	User Name	QTOF-PCladmin
Acq Method	ACgroup_new.m	Acquired Time	2020-07-21 11:01:36
IRM Calibration Status Success DA Method	Default.m		
Comment			
Acquisition SW	6200 series TOF/6500 series		
Version	Q-TOF B.05.00 (B5042.2)		

Compounds

Peak List
$\boldsymbol{m} / \boldsymbol{z}$ z Abund Formula Ion 220.1691 1 633188.69 C 14 H 22 NO $(\mathrm{M}+\mathrm{H})+$ 221.1725 1 98736.27 C 14 H 22 NO $(\mathrm{M}+\mathrm{H})+$ 222.1754 1 8725.76 C 14 H 22 NO $(\mathrm{M}+\mathrm{H})+$ 223.1771 1 692.21 C 14 H 22 NO $(\mathrm{M}+\mathrm{H})+$ 242.1505 1 83385.63 C 14 H 21 NNaO $(\mathrm{M}+\mathrm{Na})+$ 243.1535 1 13361.52 C 14 H 21 NNaO $(\mathrm{M}+\mathrm{Na})+$ 244.1565 1 1259.79 C 14 H 21 NNaO $(\mathrm{M}+\mathrm{Na})+$ 258.1246 1 3294.03 C 14 H 21 KNO $(\mathrm{M}+\mathrm{K})+$ 259.1305 1 679.18 C 14 H 21 KNO $(\mathrm{M}+\mathrm{K})+$ 260.124 1 273.89 C 14 H 21 KNO $(\mathrm{M}+\mathrm{K})+$

Figure S13. Racemic amide 3g.

Figure S14. HPLC of amide (S)-3g.

Qualitative Analysis Report

Data Filename	LD1261.d	Sample Name	Unavailable
Sample Type	Unavailable	Position	Unavailable
Instrument Name	Unavailable	User Name	Unavailable
Acq Method		Acquired Time	Unavailable
IRM Calibration Status	Success	DA Method	Default.m
Comment	Sample information is unavailable		

Compounds

Peak List
Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund	Formula	Ion
206.1549	1	142302.25	C 13 H 20 NO	$(\mathrm{M}+\mathrm{H})+$
207.158	1	19824.5	C 13 H 20 NO	$(\mathrm{M}+\mathrm{H})+$
208.1613	1	1641.99	C 13 H 20 NO	$(\mathrm{M}+\mathrm{H})+$
228.1369	1	20929.16	C 13 H 19 NNaO	$(\mathrm{M}+\mathrm{Na})+$
229.1409	1	3730.46	C 13 H 19 NNaO	$(\mathrm{M}+\mathrm{Na})+$
230.1418	1	705.25	C 13 H 19 NNaO	$(\mathrm{M}+\mathrm{Na})+$

08＇ZくI－

Figure S15. Racemic amide 3h.

Figure S16. HPLC of amide (S)-3h.

Qualitative Analysis Report
Data Filename
Sample Type
Instrument Name
Acq Method
IRM Calibration Status
Comment

LD1255b.d	Sample Name	Unavailable
Unavailable	Position	Unavailable
Unavailable	User Name	Unavailable
	Acquired Time	Unavailable
Success	DA Method	Default.m
Sample information is unavailable		

Compounds

Peak List

| $\boldsymbol{m / z}$ | \mathbf{z} | Abund | Formula | Ion |
| :---: | ---: | ---: | ---: | :--- | :--- |
| 204.1387 | 1 | 19804.53 | C13H18NO | $(\mathrm{M}+\mathrm{H})+$ |
| 205.1424 | 1 | 2873.13 | C 13 H 18 NO | $(\mathrm{M}+\mathrm{H})+$ |
| 206.1407 | 1 | 516.38 | C 13 H 18 NO | $(\mathrm{M}+\mathrm{H})+$ |

