Supplementary Material

Folic Acid-Maltodextrin Polymers Coated Magnetic Graphene Oxide as NIR-responsive Nano-drug Delivery System for Chemo-photothermal Synergistic Inhibition of Tumor Cell

Tao Gong, ^{a1} Xiaoyu Wang, ^{a1} Huirui Zhu, ^a Chaochao Wen, ^b Qing Ma, ^a Xiaoning Li, ^a Meining Li, ^a Rui Guo, ^{*a} and Wenting Liang ^{*b}

¹ These authors contribute equally

^a Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China; 15834151276@139.com (R. G.)

^b Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China; liangwt@sxu.edu.cn (W. L.).

1. Synthesis of MGO and MGO-APTES

According to our previous reported work^[1], GO nanosheets were prepared by a modified Hummer's method with natural graphite powder. FeCl₃·6H₂O and FeCl₂·4H₂O (mol ratio of 2:1) were dissolved into 100 mL deionized water with dispersed appropriate amount of GO nanosheets. After injection of NH₃·H₂O (25%), the reaction was kept stirring with vigorous mechanical agitation under a nitrogen environment for 4 h at 80 °C to yield magnetic black precipitate. The mixture was magnetically separated and washed with DI water and anhydrous ethanol three times, and freeze-dried overnight for further use.

The obtained MGO powder (200 mg) was dispersed in ethanol (200 mL, 99.5%) by ultrasonic. APTES (300 μ L) was added to the mixture with a mechanical agitation for 8 h at room temperature under N₂ protection. The precipitate was magnetically separated and washed with ethanol and deionized water three times. Finally, it was freeze-dried for 24 h to get amino-MGO.

2. Lagergren's pseudo-first-order kinetic model (Eq (1)) and Ho's pseudo-secondorder model (Eq (2))

$$\ln(q_e - q_t) = \ln(q_e) - k_1 t, \tag{1}$$

$$\frac{\mathbf{t}}{q_t} = \frac{1}{\mathbf{k}_2 q_e^2} + \frac{\mathbf{t}}{q_e},\tag{2}$$

where, in equation (1) and (2): $q_e (mg/g)$ is equilibrium adsorption capacity; $q_t (mg/g)$ is the drug loading at different time points; t (min) is the drug loading time; k_1 and k_2 are kinetic constants.

3. Langmuir model (Equ (3)) and Freundlich model (Equ (4))

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L},$$
(3)

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e, \tag{4}$$

where, in equation (3) and (4): $C_e (mg/L)$ is the mass concentration at the time of drug loading equilibrium; $q_m (mg/g)$ is the drug load in the saturated state; $q_e (mg/g)$ is the drug load at equilibrium; $K_L (L/mg)$ is the dissociation constant; K_f is the Freundlich constant; 1/n is the Freundlich component factor.

Reference

[1] Liang W, Huang Y, Lu D, et al. β-Cyclodextrin-Hyaluronic Acid Polymer Functionalized Magnetic Graphene Oxide Nanocomposites for Targeted Photo-Chemotherapy of Tumor Cells, Polymers. (2019), 11(1): 133.

Figure S1. TEM images of MGO.

Figure S2. Size distribution of MGO-MDP-FA measured by DLS.

Figure S3. XRD of MGO.

Figure S4. TGA curves of MGO in air.

Figure S5. Temperature change curves of Fe_3O_4 , GO and MGO solution with the
concentration of 1.0 mg mL⁻¹ under NIR laser irradiation (808 nm, 2.0 W cm⁻²) for 0-5
min recorded by the thermal camera.

Figure S6. Plot of calibration curves for DOX solution with different concentration.

Figure S7. UV-Vis spectra of newly prepared MGO-MDP-FA@DOX aqueous solutionplacedforonemonth.

Table S1. The drug adsorption kinetic parameters for DOX on MGO-MDP-FA

 corresponded with Lagergren's pseudo-first-order model and Ho's pseudo-second-order

Lagergren's pseudo-first-order kinetic model			Ho's pseudo-second-order kinetic model		
$q_e(mg/g)$	$k_1(h^{-1})$	R ²	$q_e(mg/g)$	$k_2(g(mg \cdot h)^{-1})$	R ²
2.701	0.00434	0.9113	33.85	0.005788	0.9999

Table S2. Relevant parameters of Langmuir isotherm and Freundlich isothermadsorption models for DOX by MGO-MDP-FA

Langmuir isotherm Model			Freundlich isotherm Model		
$q_m(mg/g)$	K_L (mg/mL)	R ²	n	$K_{f}(mL/g)$	R ²
657.9	0.2603	0.9983	3.295	192.9	0.9222