Supporting Information

NOVEL SALENCO(III) PHOTOINITIATORS AND THEIR APPLICATION FOR CYCLOADDITION OF CARBON DIOXIDE

Daoqing Chen, LongChao Du, Jie Yang

Address correspondence to Longchao Du, School of Chemistry and Chemical Engineering, the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province & Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PRC.

E-mail address: dulongchao@sina.com

General information:

All reactions are protected by the passage of N₂, except for specific reactions that require the passage of O₂. All reagents purchased were analytically pure (AR) with a purity of 99.0% or higher. All reagents used for the reaction and polymerization were distilled with calcium hydride and placed inside the dry (1,2-dichloroethane, propylene oxide, CH3CN). The ¹H-NMR was recorded on a nuclear magnetic resonance (NMR) spectrometer (avanceii, 400MHz). Samples were dissolved in CDCl₃ or CD₃SOCD₃. The ultraviolet visible absorption spectrum was recorded on Shimadzu UV-3600 spectrophotometer.

Scheme S2 Synthesis route of Compound 2, [C3] and [C4]

Fig S1 (a) is the ¹H-NMR of compound 1; (b) is the ESI-MS mass spectrum of compound 1

Fig S2. Infrared spectrum of compound 1

Fig S3 (a) is the ¹H-NMR of compound 2; (b) is the ESI-MS mass spectrum of compound 2

Fig S4. Infrared spectrum of compound 2

Fig S5 (a) is the ¹H-NMR of [C1]; (b) is the ESI-MS mass spectrum of [C1]

Fig S6 (a) is the ¹H-NMR of [C2]; (b) is the ESI-MS mass spectrum of [C2]

Fig S7. Infrared spectrum of [C1] and [C2]

Fig S8 (a) is the ¹H-NMR of [C3]; (b) is the ESI-MS mass spectrum of [C3]

Fig S9 (a) is the ¹H-NMR of [C4]; (b) is the ESI-MS mass spectrum of [C4]

Fig S10. Infrared spectrum of [C3] and [C4]

Wavelength(cm⁻¹)

Fig S11. ¹H NMR of the products catalyzed by [C1], [C2], [C3] and [C4] with shading experiments

Fig S12. ¹H NMR of the products catalyzed by [C1], [C2], [C3] and [C4] with light experiments.

Fig S13. The ¹H NMR of the products for [C4] under different light sources: 0 W, 100 W, 200 W at 60°C, 6 h and 2 MPa CO₂

Fig S14. The light transmittance of the filter can reach about 90% in the range of 395 nm~421nm.

Fig S16. The light transmittance of the filter can reach about 90% in the range of 472 nm~505 nm.

Fig S18. The light transmittance of the filter can reach about 90% in the range of 536nm~575nm.

Table S1 Elemental analysis

Entry	Sample	С%	Н%	N%
1	Compound 1	78.47	7.53	6.54
2	Compound 2	77.38	8.81	6.45
3	[C1]	68.95	5.80	8.75
4	[C2]	69.31	6.11	9.65
5	[C3]	68.30	6.65	8.61
6	[C4]	68.93	6.89	9.57

Table S2 The result of catalytic copolymerization of CO_2 with PO^a

Cat	T (°C)	P (MPa)	t (h)	TOF-1	TON
[C4]	50	2	6	27.52	165.1
[C4]	60	2	6	31.55	189.3
[C4]	70	2	6	33.72	202.3
[C4]	80	2	6	35.43	212.6
[C4]	60	1	6	24.17	145
[C4]	60	2	6	31.55	189.3
[C4]	60	3	6	36.05	216.3
[C4]	60	4	6	37.75	226.5
[C4]	60	2	0.5	172.6	86.3
[C4]	60	2	2	62.7	125.4
[C4]	60	2	4	41.28	165.1
[C4]	60	2	6	31.55	189.3
[C4]	60	2	8	25.71	205.7
[C4]	60	2	12	19.175	230.1
[C4]	60	2	16	14.28	228.5
[C4]	60	2	20	10.77	215.3

^{a.} Reaction conditions: catalyst 3*10⁻⁵ mol; 100 W light source lighting.

Table S3 Activity of past heterogeneous catalysts in carbon dioxide cycloaddition reactions

Cat	Epoxide	T (°C)	P (MPa)	TON	CPC (%)	Ref.
6	РО	60	2	126	10	[1]
6	СНО	60	2	216	13	[1]
[C4]	РО	60	2	128.4	44.3	This work
[C4]	СНО	60	2	204.5	46.7	This work

References

¹ L. Du, C. Wang, W. Zhu and J. Zhang, *J Chin Chem Soc*, 2020, **67**, 72–79.