Supporting information

Visible-light-promoted N-H functionalization of O-substituted hydroxamic acid with diazo esters

Shuangshuang Xia,^a Yongchan Jian,^a Liwen Zhang,^a Cheng Zhang,^a Yuanyuan An^{*a} and Yubin Wang^{*a}

^a School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China

Table of contents

1. General information	S2
2. Optimization of reaction conditions	S3
3. Experimental section	S5
4. Analytical data of products	S10
5. References	S33
6. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S34

1. General information

Unless otherwise indicated, all the regents and solvents were purchased from commercial suppliers and used without any further purification. Thin layer chromatography (TLC) was performed on commercial silica gel plates and flash column chromatography was performed with 300–400 mesh silica gel cartridge. Visualization of TLC achieved using ultraviolet light (254 nm). NMR spectra were recorded on a Bruker Avance 400 MHz (400 MHz for ¹H; 376 MHz for ¹⁹F; 100 MHz for ¹³C) instruments and are referenced relative to CDCl₃ (δ 7.26 ppm for ¹H, 77.16 ppm for ¹³C) using TMS as internal standard. Data are recorded as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = penta), coupling constant (*J*) in Hertz (Hz), and integration. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI (electrospray ionization).

2. Optimization of reaction conditions

Table S1 Optimization of reaction conditions.^a

	Q		o	\checkmark
Ph CO ₂ Me		hv, air solvent, base	H ₃ NOBn +	O N OBn
1a	2a	Ph	CO ₂ Me 3aa	Ph CO ₂ Me 4aa
Entry	Base	Solvent	Solvent Yield $(\%)^b$	
		-	3aa	4 aa
1	NaHCO ₃	THF	trace	n.d.
2	NaOH	THF	63	n.d.
3	DBU	THF	50	n.d.
4	KO ^t Bu	THF	90	trace
5^c	KO ^t Bu	THF	n.d.	n.d.
6^d	KO'Bu	THF	85	n.d.
7^e	KO'Bu	THF	29	n.d.
8^f	KO'Bu	THF	6	n.d.
9^g	KO'Bu	THF	18	n.d.
10^{h}	KO'Bu	THF	27	n.d.
11	KO ^t Bu	1,4-dioxane	n.d.	60
12	Cs_2CO_3	1,4-dioxane	n.d.	49
13	NaOH	1,4-dioxane	n.d.	43
14	NaHCO ₃	1,4-dioxane	n.d.	trace
15	KO ^t Bu	DCE	n.d.	n.d.
16	KO ^t Bu	DMF	n.d.	n.d.
17	KO ^t Bu	CH ₃ CN	n.d.	n.d.
18 ^c	KO'Bu	1,4-dioxane	n.d.	n.d.

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), base (1.2 equiv), solvent (2 mL), 14 h, room temperature, 30 W blue LEDs ($\lambda \approx 440-450$ nm). ^{*b*}Isolated yields. ^{*c*}Without light irradiation. ^{*d*}Under N₂ atmosphere. ^{*e*}10 W green light ($\lambda = 520$ nm). ^{*f*}12 W CFL. ^{*g*}2 W blue light ($\lambda = 495$ nm). ^{*h*}5 W blue light ($\lambda = 495$ nm). n.d. = no desired product was detected.

Studies on the effect of water:

Methyl 2-diazo-2-phenylacetate **1a** (0.2 mmol), N-(benzyloxy)-2-bromo-2methylpropanamide **2a** (0.3 mmol), KO'Bu (0.24 mmol) and H₂O (0.2 mmol, 3.6 μ L) were combined in 2 mL of THF, and the mixture was stirred under the irradiation of 30 W blue LEDs ($\lambda \approx 440-450$ nm) for 14 hours at room temperature.

The reaction resulted in the formation of **3aa** in 28% yield and a N-H insertion product **10** that still brominated in 46% yield (The yields of products **3aa** and **10** were determined by ¹H NMR). TLC result showed that products **3aa** and **10** are difficult to separate because of resemble structure and close characters. This result suggested that water has much influence on the efficiency and chemoselectivity of this reaction.

3. Experimental section

(1) Preparation of starting materials

Synthesis of substrate 1^[1-2]:

$$\begin{array}{c} & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

To a flask containing ROH (1 equiv), DCM and Et₃N (1.2 equiv), 2-phenylacetyl chloride **A** (1.2 equiv) was added and the reaction was kept at 0 °C for 2 h. Then the solution was warmed to room temperature and kept for 1 h. Afterwards, the solution was filtered and the filtrate was concentrated. Then it was extracted with ethyl acetate and dried over Na₂SO₄ to give the crude product, which was next purified in flash column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:100) as eluent to get compound **B**.

DBU (1.5 equiv) was added dropwise to a solution of compound **B** (1 equiv) and TsN₃ (1.5 equiv) in dry MeCN at room temperature under nitrogen atmosphere. After stirring for 24 h the mixture was diluted with water and the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was evaporated and purification of the crude product by column chromatography (PE: EA = 95:5) yielded **1** as a red-orange oil.

Synthesis of substrate 2^[3]:

To a solution of O-benzyloxyamine hydrochloride **D** (2.0 g, 12.5 mmol, 1.0 eq) in dichloromethane (50 ml), triethylamine (1.75 ml, 12.5 mmol, 1.0 eq) was added. The reaction mixture was then cooled to 0 °C in an ice water bath. Next, α -haloacid halide **C** (1.5 ml, 12.5 mmol, 1.0 eq) was added dropwise to the reaction mixture. The reaction was stirred for 4 hours at 0 °C. After 4 hours, the mixture was allowed to warm to room temperature. The reaction was then quenched with water. The resulting mixture was diluted with DCM and was washed with water (3 × 50 mL), followed by brine. The

organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The crude reaction mixture was purified by silica gel chromatography (ethyl acetate/hexanes) to give compound **2** as a white solid.

(2) General procedure of this visible-light-promoted N-H functionalization of Osubstituted hydroxamic acid with diazo esters.

Aryldiazoacetates **1** (0.2 mmol), α -halohydroxamates **2** (0.3 mmol) and KO'Bu (0.24 mmol) were combined in 2 mL of THF, and the mixture was stirred under the irradiation of 30 W blue LEDs ($\lambda \approx 440-450$ nm) for 14 hours at room temperature. As the reaction completed, the solution was concentrated under reduced pressure, then the residue was purified by column chromatography (PE/EA = 25/1) to afford the target product **3**.

$$Ar \stackrel{N_2}{\vdash}_{CO_2R} + O \stackrel{N}{\vdash}_{H} O \stackrel{30W \text{ Blue LED}}{KO^t\text{Bu, rt, 1,4-dioxane}} O \stackrel{N}{\mapsto}_{H} O \stackrel{N}{\vdash}_{Ar} O \stackrel{N}{\leftarrow}_{CO_2R} 4$$

Aryldiazoacetates 1 (0.2 mmol), α -halohydroxamates 2 (0.3 mmol) and KO'Bu (0.24 mmol) were combined in 2 mL of dry 1,4-dioxane, and the mixture was stirred under the irradiation of 30 W blue LEDs ($\lambda \approx 440-450$ nm) for 14 hours at room temperature. The solution was next concentrated under reduced pressure, then the residue was purified by column chromatography (PE/EA = 25/1) to afford the target product 4.

The experimental setup:

Fig. S1 HRMS spectrum of compound 8 and 9

Fig. S2 HRMS spectrum for compound 8

In this reaction system, product **3aa** was not detected.

Methyl 2-diazo-2-phenylacetate **1**a (0.2)mmol), N-(benzyloxy)-2-bromo-2methylpropanamide 2a (0.3 mmol) were combined in 2 mL of THF, the mixture was stirred under the irradiation of 30 W blue LEDs ($\lambda \approx 440-450$ nm) for 14 hours at room temperature. As the reaction completed, the solution was concentrated under reduced pressure, then the residue was purified by column chromatography (PE/EA = 25/1) affording the target product 10 in 68% yield.

Methyl 2-diazo-2-phenylacetate 1a (0.2 mmol), N-(benzyloxy)methacrylamide 8 (0.3 mmol) were combined in 2 mL of THF, and the mixture was stirred under the irradiation of 30 W blue LEDs ($\lambda \approx 440-450$ nm) for 14 hours at room temperature. As the reaction completed, the solution was concentrated under reduced pressure, then the residue was purified by column chromatography (PE/EA = 25/1) to afford the desired product 3aa in 68% yield.

Synthesis of N-(benzyloxy)methacrylamide 8:

To a dry glass tube (35 mL, 18 x 180 mm) was added **2a** (0.3 mmol), KO'Bu (0.3 mmol) and 2 mL THF, then the mixture was stirred for 5 hours at room temperature. The resulting mixture was then concentrated in vacuo to afford crude product. The crude product further purified by column chromatography (PE/EA = 4/1) to afford N-(benzyloxy)methacrylamide **8**. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.41-7.34 (m, 5H), 5.57 (s, 1H), 5.31 (s, 1H), 4.94 (s, 2H), 1.91 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 137.8, 135.3, 129.3, 128.8, 128.6, 120.4, 78.2, 18.5 ppm. HRMS (ESI) (m/z): calculated for C₁₁H₁₂NO₂Na⁺ [M + Na]⁺ 241.0838; found, 241.0836.

4. Analytical data of products

Methyl 2-(4-(N-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3aa)

Yellow oil (90%, 74.2 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.38-7.35 (m, 4H), 7.33-7.30 (m, 4H), 5.57 (s, 1H), 5.17 (t, *J* = 1.63 Hz, 1H), 5.02 (s, 2H), 4.84 (s, 1H), 4.14 (t, *J* = 5.8 Hz, 2H), 3.70 (s, 3H), 3.55-3.50 (m, 1H), 3.45-3.39 (m, 1H), 1.87 (s, 3H), 1.77-1.72 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 155.8, 137.7, 136.6, 136.0, 128.6, 128.6, 128.3, 128.3, 127.8, 127.1, 118.0, 81.0, 76.5, 71.5, 69.4, 52.2, 26.8, 26.0, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₉NO₅Na⁺ [M + Na]⁺ 434.1938; found, 434.1938.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(*p*-tolyl)acetate (3ba)

Yellow oil (81%, 68.9 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 7H), 7.16 (d, J = 7.8 Hz, 2H), 5.57-5.56 (m, 1H), 5.17-5.16 (m, 1H), 5.02 (s, 2H), 4.80 (s, 1H), 4.13 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H), 3.53-3.47 (m, 1H), 3.43-3.38 (m, 1H), 2.34 (s, 3H), 1.87 (s, 3H), 1.76-1.71 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 155.9, 138.5, 137.7, 136.0, 133.6, 129.3, 128.3, 128.3, 127.8, 127.1, 118.0, 80.9, 76.5, 71.5, 69.2, 52.2, 26.8, 26.0, 21.2, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₅H₃₁NO₅Na⁺ [M + Na]⁺ 448.2094; found, 448.2098.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(4-(trifluoromethyl)phen yl)acetate (3ca)

Yellow oil (60%, 57.6 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.38-7.35 (m, 3H), 7.33-7.31 (m, 2H), 5.56 (s, 1H), 5.17 (t, J = 1.6 Hz, 1H), 5.03 (s, 2H), 4.89 (s, 1H), 4.16-4.13 (m, 2H), 3.71 (s, 3H), 3.59-3.54 (m, 1H), 3.46-3.41 (m, 1H), 1.87 (s, 3H), 1.78-1.74 (m, 4H) ppm. ¹³**C** NMR (100 MHz, CDCl₃) δ 170.7, 155.8, 140.5, 137.7, 136.1, 130.9, 130.6, 128.3, 128.3, 127.8, 127.4, 125.5 (q, $J_{CF} = 3.8$ Hz), 117.9, 80.4, 76.6, 71.4, 69.8, 52.4, 26.8, 26.0, 18.8 ppm. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.66 (3F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₂₅H₂₈F₃NO₅Na⁺ [M + Na]⁺ 502.1812; found, 502.1816.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(4-fluorophenyl)acetate (3da)

Yellow oil (75%, 64.4 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.42-7.38 (m, 2H), 7.35-7.31 (m, 5H), 7.05-7.01 (m, 2H), 5.56 (s, 1H), 5.18-5.16 (m, 1H), 5.03 (s, 2H), 4.81 (s, 1H), 4.15-4.12 (m, 2H), 3.70 (s, 3H), 3.55-3.50 (m, 1H), 3.44-3.39 (m, 1H), 1.87 (s, 3H), 1.76-1.73 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 162.9 (d, *J*_{CF} = 245.8 Hz), 155.8, 137.7, 136.1, 132.5 (d, *J*_{CF} = 3.3 Hz), 128.9 (d, *J*_{CF} = 8.3 Hz), 128.3, 128.3, 127.8, 117.9, 115.5 (d, *J*_{CF} = 21.5 Hz), 80.3, 76.5, 71.5, 69.5, 52.3, 26.8, 26.0, 18.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.23 (1F, s) ppm. HRMS (ESI) (m/z): calculated for C₂₄H₂₈FNO₅Na⁺ [M + Na]⁺ 452.1844; found, 452.1848.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(4-chlorophenyl)acetate (3ea)

Yellow oil (87%, 77.5 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.38-7.37 (m, 1H), 7.36-7.33 (m, 6H), 7.31-7.30 (m, 2H), 5.56 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.03 (s, 2H), 4.80 (s, 1H), 4.15-4.13 (m, 2H), 3.69 (s, 3H), 3.55-3.50 (m, 1H), 3.45-3.38 (m, 1H), 1.87 (s, 3H), 1.76-1.73 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 155.8, 137.7, 136.0, 135.1, 134.5, 128.8, 128.4, 128.3, 128.3, 127.8, 117.9, 80.3, 76.5, 71.5, 69.5, 52.3, 26.8, 26.0, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₈ClNO₅Na⁺ [M + Na]⁺ 468.1548; found, 468.1547.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(4-bromophenyl)acetate (3fa)

Yellow oil (76%, 74.4 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.36-7.33 (m, 3H), 7.32-7.29 (m, 4H), 5.56 (s, 1H), 5.18-5.17 (m, 1H), 5.03 (s, 2H), 4.78 (s, 1H), 4.15-4.12 (m, 2H), 3.69 (s, 3H), 3.55-3.50 (m, 1H), 3.43-3.38 (m, 1H), 1.87 (s, 3H), 1.76-1.72 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.0, 155.8, 137.7, 136.1, 135.7, 131.7, 128.7, 128.3, 128.3, 127.8, 122.7, 117.9, 80.4, 76.5, 71.5, 69.6, 52.3, 26.8, 26.0, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₈BrNO₅Na⁺ [M + Na]⁺ 512.1043; found, 512.1045.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(2-chlorophenyl)acetate (3ga)

Yellow oil (83%, 73.9 mg). ¹H NMR (400 MHz, CDCl₃) & 7.51-7.49 (m, 1H), 7.39-

7.35 (m, 4H), 7.33-7.28 (m, 4H), 5.56 (d, J = 1.0 Hz, 1H), 5.32 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.02 (s, 2H), 4.14-4.12 (m, 2H), 3.71 (s, 3H), 3.61-3.56 (m, 1H), 3.47-3.41 (m, 1H), 1.87 (s, 3H), 1.75-1.71 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 155.9, 137.7, 136.0, 134.7, 133.7, 129.8, 129.6, 128.7, 128.3, 128.3, 127.8, 127.2, 118.0, 77.2, 76.5, 71.5, 69.8, 52.3, 26.8, 26.00, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₂₄H₂₈ClNO₅Na⁺ [M + Na]⁺ 468.1548; found, 468.1553.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(3-chlorophenyl)acetate (3ha)

Yellow oil (79%, 70.4 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.43 (m, 1H), 7.38-7.33 (m, 4H), 7.32-7.29 (m, 4H), 5.57 (s, 1H), 5.18 (t, *J* = 1.6 Hz, 1H), 5.03 (s, 2H), 4.79 (s, 1H), 4.16-4.13 (m, 2H), 3.71 (s, 3H), 3.56-3.50 (m, 1H), 3.45-3.39 (m, 1H), 1.87 (s, 3H), 1.76-1.73 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.9, 155.8, 138.6, 137.7, 136.0, 134.5, 129.8, 128.8, 128.3, 128.3, 127.8, 127.2, 125.2, 118.0, 80.3, 76.5, 71.4, 69.6, 52.4, 26.7, 26.0, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₈ClNO₅Na⁺ [M + Na]⁺ 468.1548; found, 468.1550.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(3,4-dichlorophenyl)aceta te (3ia)

Yellow oil (74%, 70.9 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 2.0 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.38-7.33 (m, 4H), 7.32-7.30 (m, 1H), 7.29-7.27 (m, 1H), 5.56 (d, *J* = 1.0 Hz, 1H), 5.18 (t, *J* = 1.7 Hz, 1H), 5.03 (s, 2H), 4.77 (s, 1H), 4.16-4.13 (m, 2H), 3.71 (s, 3H), 3.56-3.51 (m, 1H), 3.44-3.39 (m, 1H), 1.88 (s, 3H), 1.76-1.73 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 155.8, 137.6, 136.8, 136.0, 132.7, 132.8, 130.6, 129.0, 128.3, 128.2, 127.8, 126.3, 117.9, 79.7, 76.6, 71.4, 69.8, 52.5, 26.7, 26.0, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₂₄H₂₇Cl₂NO₅Na⁺ [M + Na]⁺ 502.1158; found, 502.1158.

Methyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-(naphthalen-2-yl)acetate (3ja)

Yellow oil (79%, 72.9 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85-7.81 (m, 3H), 7.56-7.53 (m, 1H), 7.50-7.47 (m, 2H), 7.37-7.33 (m, 3H), 7.32-7.29 (m, 2H), 5.56 (s, 1H), 5.16 (t, *J* = 1.7 Hz, 1H), 5.01 (s, 2H), 5.00 (s, 1H), 4.16-4.13 (m, 2H), 3.70 (s, 3H), 3.59-3.54 (m, 1H), 3.49-3.44 (m, 1H), 1.86 (s, 3H), 1.78-1.75 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.3, 155.8, 137.7, 136.0, 134.0, 133.4, 133.1, 128.5, 128.3, 128.3, 128.1, 127.8, 127.7, 126.6, 126.4, 126.3, 124.5, 118.0, 81.2, 76.5, 71.5, 69.4, 52.3, 26.8, 26.0, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₈H₃₁NO₅Na⁺ [M + Na]⁺ 484.2094; found, 484.2095.

Ethyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3ka)

Yellow oil (76%, 64.6 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.38-7.34 (m, 4H), 7.33-7.30 (m, 4H), 5.57 (s, 1H), 5.17 (t, *J* = 1.6 Hz, 1H), 5.02 (s, 2H), 4.81 (s, 1H), 4.18-4.11 (m, 4H), 3.56-3.51 (m, 1H), 3.45-3.40 (m, 1H), 1.87 (s, 3H), 1.77-1.73 (m, 4H), 1.20 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.0, 155.9, 137.7, 136.7, 136.0, 128.5, 128.3, 128.3, 127.8, 127.1, 118.0, 81.1, 76.5, 71.5, 69.3, 61.1, 26.8, 26.0, 18.8, 14.1 ppm. **HRMS** (ESI) (m/z): calculated for C₂₅H₃₁NO₅Na⁺ [M + Na]⁺ 448.2094; found, 448.2096.

Hexyl 2-(4-(N-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3la)

Yellow oil (67%, 64.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.38-7.34 (m, 4H), 7.33-7.30 (m, 4H), 5.57 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.02 (s, 2H), 4.82 (s, 1H), 4.16-4.13 (m, 2H), 4.09 (t, J = 6.7 Hz, 2H), 3.56-3.51 (m, 1H), 3.45-3.40 (m, 1H), 1.87 (s, 3H), 1.77-1.72 (m, 4H), 1.57-1.52 (m, 2H), 1.23-1.18 (m, 6H), 0.84 (t, J = 6.6 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 155.9, 137.7, 136.8, 136.0, 128.5, 128.3, 128.3, 127.8, 127.1, 118.0, 81.1, 76.5, 71.6, 69.3, 65.2, 31.3, 28.4, 26.8, 26.0, 25.3, 22.5, 18.8, 14.0 ppm. HRMS (ESI) (m/z): calculated for C₂₉H₃₉NO₅Na⁺ [M + Na]⁺ 504.2720; found, 504.2719.

Isopropyl 2-(4-(N-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3ma) Yellow oil (51%, 44.8 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.38-7.35 (m, 3H), 7.34-7.30 (m, 5H), 5.57 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.03 (s, 2H), 5.06-5.00 (m, 1H), 4.78 (s, 1H), 4.15 (t, J = 5.9 Hz, 2H), 3.57-3.51 (m, 1H), 3.46-3.41 (m, 1H), 1.87 (s, 3H), 1.78-1.72 (m, 4H), 1.23 (d, J = 6.3 Hz, 3H), 1.11 (d, J = 6.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 155.9, 137.7, 136.8, 136.1, 128.5, 128.4, 128.3, 128.3, 127.8, 127.0, 118.0, 81.2, 76.5, 71.6, 69.3, 68.7, 26.9, 26.0, 21.8, 21.5, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₆H₃₃NO₅Na⁺ [M + Na]⁺ 462.2251; found, 462.2251.

Benzyl 2-(4-(*N*-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3na) Yellow oil (79%, 77.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.37-7.32 (m, 7H), 7.30-7.28 (m, 4H), 7.22-7.19 (m, 2H), 5.56 (s, 1H), 5.17-5.08 (m, 3H), 5.02 (s, 2H), 4.87 (s, 1H), 4.14-4.11 (m, 2H), 3.55-3.50 (m, 1H), 3.45-3.40 (m, 1H), 1.87 (s, 3H), 1.75-1.72 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 155.8, 137.7, 136.5, 136.0, 135.5, 128.6, 128.6, 128.5, 128.3, 128.3, 128.2, 127.9, 127.8, 127.1, 118.0, 81.0, 76.5, 71.5, 69.4, 66.7, 26.8, 26.0, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₃₀H₃₃NO₅Na⁺ [M + Na]⁺ 510.2251; found, 510.2253.

Cyclobutyl 2-(4-(*N***-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3oa)** Yellow oil (80%, 72.2 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.38-7.35 (m, 4H), 7.33-7.30 (m, 4H), 5.57 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.02 (s, 2H), 5.01-4.97 (m, 1H), 4.78 (s, 1H), 4.14 (t, J = 5.9 Hz, 2H), 3.56-3.50 (m, 1H), 3.45-3.40 (m, 1H), 2.35-2.31 (m, 1H), 2.29-2.24 (m, 1H), 2.09-1.99 (m, 1H), 1.98-1.91 (m, 1H), 1.87 (s, 3H), 1.78-1.71 (m, 5H), 1.62-1.54 (m, 1H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.3, 155.9, 137.7, 136.7, 136.0, 128.5, 128.5, 128.3, 128.3, 127.8, 127.1, 118.0, 81.0, 76.5, 71.6, 69.5, 69.3, 30.2, 30.1, 26.8, 26.0, 18.8, 13.5 ppm. **HRMS** (ESI) (m/z): calculated for C₂₇H₃₃NO₅Na⁺ [M + Na]⁺ 474.2251; found, 474.2247.

Yellow oil (91%, 84.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.38-7.35 (m, 3H), 7.33-7.30 (m, 5H), 5.57 (s, 1H), 5.20-5.17 (m, 2H), 5.02 (s, 2H), 4.77 (s, 1H), 4.15 (t, *J* = 5.9 Hz, 2H), 3.56-3.51 (m, 1H), 3.45-3.40 (m, 1H), 1.87 (s, 3H), 1.77-1.73 (m, 4H), 1.71-1.61 (m, 3H), 1.59-1.46 (m, 5H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 155.9, 137.7, 136.9, 136.0, 128.4, 128.4, 128.3, 128.3, 127.8, 127.0, 118.0, 81.1, 77.9, 76.5, 71.6, 69.3, 32.5, 32.5, 26.8, 26.0, 23.6, 23.5, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₈H₃₅NO₅Na⁺ [M + Na]⁺ 488.2407; found, 488.2408.

2-Methylallyl 2-(4-(*N***-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3qa)** Yellow oil (60%, 54.2 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.38-7.35 (m, 4H), 7.33-7.30 (m, 4H), 5.57 (s, 1H), 5.17 (t, *J* = 1.7 Hz, 1H), 5.02 (s, 2H), 4.86 (s, 1H), 4.83 (d, *J* = 7.2 Hz, 2H), 4.56-4.48 (m, 2H), 4.14 (t, *J* = 5.8 Hz, 2H), 3.58-3.53 (m, 1H), 3.46-3.41 (m, 1H), 1.87 (s, 3H), 1.77-1.72 (m, 4H), 1.61 (s, 3H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 170.6, 155.8, 139.4, 137.7, 136.7, 136.0, 128.6, 128.6, 128.3, 128.3, 127.8, 127.1, 118.0, 113.1, 81.1, 76.5, 71.5, 69.4, 68.1, 26.8, 26.0, 19.3, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₇H₃₃NO₅Na⁺ [M + Na]⁺ 474.2251; found, 474.2248.

But-3-yn-1-yl 2-(4-(*N***-(benzyloxy)methacrylamido)butoxy)-2-phenylacetate (3ra)** Yellow oil (71%, 63.8 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.38-7.35 (m, 4H), 7.33-7.31 (m, 4H), 5.57 (s, 1H), 5.17 (t, *J* = 1.7 Hz, 1H), 5.02 (s, 2H), 4.85 (s, 1H), 4.24-4.17 (m, 2H), 4.14 (t, *J* = 5.9 Hz, 2H), 3.58-3.53 (m, 1H), 3.46-3.41 (m, 1H), 2.49-2.45 (m, 2H), 1.93-1.91 (m, 1H), 1.87 (s, 3H), 1.78-1.72 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 155.8, 137.7, 136.5, 136.0, 128.6, 128.6, 128.3, 128.3, 127.8, 127.1, 118.0, 80.9, 79.6, 76.5, 71.5, 70.0, 69.4, 62.6, 26.8, 26.0, 18.9, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₂₇H₃₁NO₅Na⁺ [M + Na]⁺ 472.2094; found, 472.2098.

Yellow oil (83%, 71.3 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.32 (m, 3H), 7.04-6.99 (m, 2H), 5.56 (s, 1H), 5.18 (t, *J* = 1.7 Hz, 1H), 4.97 (s, 2H), 4.84 (s, 1H), 4.12 (t, *J* = 5.8 Hz, 2H), 3.70 (s, 3H), 3.55-3.50 (m, 1H), 3.45-3.40 (m, 1H), 1.87 (s, 3H), 1.75 (t, *J* = 3.0 Hz, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 162.5 (d, *J*_{CF} = 245.8 Hz), 156.0, 136.6, 135.9, 133.5 (d, *J*_{CF} = 3.2 Hz), 130.2 (d, *J*_{CF} = 8.1 Hz), 128.7, 128.6, 127.1, 118.2, 115.1 (d, *J*_{CF} = 21.5 Hz), 81.0, 75.7, 71.5, 69.4, 52.2, 26.8, 26.0, 18.8 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.50 (1F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₈FNO₅Na⁺ [M + Na]⁺ 452.1844; found, 452.1847.

Benzyl 2-(4-(*N*-((4-fluorobenzyl)oxy)methacrylamido)butoxy)-2-phenylacetate (3nb)

Yellow oil (65%, 65.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.41 (m, 2H), 7.34-7.32 (m, 4H), 7.31-7.29 (m, 4H), 7.22-7.20 (m, 2H), 7.03-6.98 (m, 2H), 5.56 (s, 1H), 5.17 (t, *J* = 1.7 Hz, 1H), 5.18-5.09 (m, 2H), 4.97 (s, 2H), 4.87 (s, 1H), 4.12-4.09 (m, 2H), 3.56-3.50 (m, 1H), 3.45-3.40 (m, 1H), 1.86 (s, 3H), 1.75-1.72 (m, 4H) ppm. ¹³C **NMR** (100 MHz, CDCl₃) δ 170.8, 163.5 (d, J_{CF} = 246.1 Hz) 156.0, 136.5, 135.9, 135.5, 133.5 (d, J_{CF} = 3.2 Hz), 130.2 (d, J_{CF} = 8.2 Hz), 128.6, 128.6, 128.5, 128.2, 128.0, 127.2, 118.2, 115.1 (d, J_{CF} = 21.3 Hz), 81.1, 75.7, 71.5, 69.4, 66.7, 26.8, 26.0, 18.8 ppm. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -114.50 (1F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₃₀H₃₂FNO₅Na⁺ [M + Na]⁺ 528.2157; found, 528.2162.

Methyl 2-(4-(N-(benzyloxy)pivalamido)butoxy)-2-phenylacetate (3ad)

Yellow oil (58%, 49.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.37-7.32 (m, 7H), 7.30-7.28 (m, 1H), 4.91 (s, 2H), 4.84 (s, 1H), 4.27-4.24 (m, 2H), 3.69 (s, 3H), 3.54-3.50 (m, 1H), 3.45-3.39 (m, 1H), 1.72-1.69 (m, 4H), 1.10 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 162.3, 137.9, 136.6, 128.6, 128.6, 128.3, 128.2, 127.6, 127.1, 81.1, 76.0, 72.2, 69.5, 52.2, 36.5, 27.6, 26.9, 26.0 ppm. HRMS (ESI) (m/z): calculated for C₂₅H₃₃NO₅Na⁺ [M + Na]⁺ 450.2251; found, 450.2249.

Methyl 2-(4-(N-(benzyloxy)benzamido)butoxy)-2-phenylacetate (3ag)

Yellow oil (56%, 50.1 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 7.43-7.40 (m, 4H), 7.37-7.34 (m, 5H), 7.33-7.31 (m, 4H), 5.10 (s, 2H), 4.84 (s, 1H), 4.27 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H), 3.57-3.51 (m, 1H), 3.46-3.41 (m, 1H), 1.83-1.76 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 154.5, 137.8, 136.6, 131.4, 129.9, 128.6, 128.6, 128.6, 128.3, 128.3, 127.8, 127.1, 127.0, 81.0, 76.6, 71.7, 69.3, 52.2, 26.9, 26.0 ppm. **HRMS** (ESI) (m/z): calculated for C₂₇H₂₉NO₅Na⁺ [M + Na]⁺ 470.1938; found, 470.1937.

Methyl 2-(4-(*N*-(benzyloxy)-4-fluorobenzamido)butoxy)-2-phenylacetate (3ah) Yellow oil (91%, 84.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.66 (m, 2H), 7.43-7.39 (m, 4H), 7.37-7.33 (m, 5H), 7.32-7.30 (m, 1H), 7.03-6.99 (m, 2H), 5.08 (s, 2H), 4.84 (s, 1H), 4.30 (t, J = 6.1 Hz, 2H), 3.69 (s, 3H), 3.57-3.52 (m, 1H), 3.47-3.41 (m, 1H), 1.84-1.74 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 163.8 (d, $J_{CF} =$ 249.7 Hz), 153.4, 137.7, 136.6, 128.9 (d, $J_{CF} = 8.4$ Hz), 128.7, 128.6, 128.4, 128.3, 127.9, 127.6 (d, $J_{CF} = 3.1$ Hz), 127.1, 115.3 (d, $J_{CF} = 21.8$ Hz), 81.0, 76.7, 72.0, 69.3, 52.2, 26.9, 26.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.95 (1F, s) ppm. HRMS (ESI) (m/z): calculated for C₂₇H₂₈FNO₅Na⁺ [M + Na]⁺ 488.1844; found, 488.1843.

Methyl 2-(4-(*N***-(benzyloxy)-4-chlorobenzamido)butoxy)-2-phenylacetate (3ai)** Yellow oil (92%, 88.6 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.64-7.62 (m, 2H), 7.43-7.42 (m, 1H), 7.41-7.37 (m, 4H), 7.35-7.33 (m, 4H), 7.32-7.28 (m, 3H), 5.09 (s, 2H), 4.83 (s, 1H), 4.31 (t, *J* = 6.1 Hz, 2H), 3.69 (s, 3H), 3.57-3.51 (m, 1H), 3.46-3.41 (m, 1H), 1.84-1.74 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.3, 153.2, 137.6, 136.5, 135.8, 130.1, 128.6, 128.6, 128.5, 128.3, 128.3, 128.1, 127.9, 127.1, 81.0, 76.7, 72.0, 69.3, 52.2, 26.9, 25.9 ppm. **HRMS** (ESI) (m/z): calculated for C₂₇H₂₈ClNO₅Na⁺ [M + Na]⁺ 504.1548; found, 504.1549.

Methyl 2-(4-(*N*-(benzyloxy)-4-bromobenzamido)butoxy)-2-phenylacetate (3aj) Yellow oil (82%, 86.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.46-7.45 (m, 1H), 7.44-7.43 (m, 1H), 7.42-7.38 (m, 4H), 7.37-7.31 (m, 6H), 5.08 (s, 2H), 4.83 (s, 1H), 4.30 (t, *J* = 6.1 Hz, 2H), 3.69 (s, 3H), 3.57-3.51 (m, 1H), 3.46-3.41 (m, 1H), 1.84-1.73 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 153.3, 137.6, 136.5, 131.4, 130.6, 128.7, 128.6, 128.4, 128.4, 128.3, 127.9, 127.1, 124.2, 81.0, 76.8, 72.0, 69.3, 52.2, 26.9, 26.0 ppm. HRMS (ESI) (m/z): calculated for C₂₇H₂₈BrNO₅Na⁺ [M + Na]⁺ 548.1043; found, 548.1042.

Methyl 2-(4-(*N***-(benzyloxy)-4-methylbenzamido)butoxy)-2-phenylacetate (3ak)** Yellow oil (81%, 74.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.43-7.39 (m, 4H), 7.37-7.29 (m, 6H), 7.14 (d, *J* = 7.9 Hz, 2H), 5.09 (s, 2H), 4.83 (s, 1H), 4.24 (t, *J* = 6.0 Hz, 2H), 3.69 (s, 3H), 3.56-3.51 (m, 1H), 3.46-3.40 (m, 1H), 2.35 (s, 3H), 1.82-1.74 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 154.7, 140.0, 137.8, 136.6, 129.0, 128.6, 128.6, 128.4, 128.3, 128.3, 127.8, 127.1, 127.0, 81.0, 76.5, 71.6, 69.3, 52.2, 26.9, 25.9, 21.4 ppm. **HRMS** (ESI) (m/z): calculated for C₂₈H₃₁NO₅Na⁺ [M + Na]⁺ 484.2094; found, 484.2099.

Methyl 2-(4-(*N*-(benzyloxy)-4-(trifluoromethyl)benzamido)butoxy)-2-phenylacet ate (3al)

Yellow oil (88%, 90.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.43-7.39 (m, 4H), 7.38-7.35 (m, 3H), 7.34-7.32 (m, 3H), 5.11 (s, 2H), 4.84 (s, 1H), 4.36 (t, J = 6.1 Hz, 2H), 3.69 (s, 3H), 3.58-3.52 (m, 1H), 3.47-3.42 (m, 1H), 1.85-1.75 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 152.7, 137.4, 136.6, 135.2, 131.7, 131.3, 128.7, 128.6, 128.4, 128.4, 128.0, 127.1, 127.0, 125.2 (q, $J_{CF} = 3.96$ Hz), 81.1, 72.2, 69.3, 52.2, 26.9, 26.0 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.76 (3F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₂₈H₂₈F₃NO₅Na⁺ [M + Na]⁺ 538.1812; found, 538.1810.

Methyl 2-(4-(*N*-(benzyloxy)-4-(tert-butyl)benzamido)butoxy)-2-phenylacetate (3am)

Yellow oil (86%, 86.6 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H), 7.43-7.39 (m, 4H), 7.37-7.34 (m, 4H), 7.34-7.30 (m, 4H), 5.09 (s, 2H), 4.84 (s, 1H), 4.24 (t, J = 6.0 Hz, 2H), 3.69 (s, 3H), 3.57-3.51 (m, 1H), 3.46-3.41 (m, 1H), 1.84-1.75 (m, 4H), 1.31 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.4, 154.7, 153.1, 137.9, 136.6, 128.6, 128.6, 128.4, 128.3, 128.3, 127.7, 127.1, 126.8, 125.3, 81.0, 76.5, 71.6, 69.4, 52.2, 34.7, 31.2, 26.9, 26.0 ppm. **HRMS** (ESI) (m/z): calculated for C₃₁H₃₇NO₅Na⁺ [M + Na]⁺ 526.2564; found, 526.2567.

Methyl (R)-2-((5-(N-(benzyloxy)methacrylamido)pentyl)oxy)-2-phenylacetate (5) Yellow oil (51%, 43.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.38-7.35 (m, 4H), 7.34-7.30 (m, 4H), 5.57 (s, 1H), 5.17-5.16 (m, 1H), 5.03 (s, 2H), 4.85 (s, 1H), 4.11 (t, *J* = 6.6 Hz, 2H), 3.70 (s, 3H), 3.53-3.47 (m, 1H), 3.42-3.37 (m, 1H), 1.87 (s, 3H), 1.68-1.61 (m, 4H), 1.48-1.41 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 155.9, 137.7, 136.7, 136.1, 128.6, 128.6, 128.3, 128.3, 127.8, 127.1, 117.9, 81.1, 76.5, 71.7, 69.7, 52.2, 29.8, 29.2, 22.3, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₂₅H₃₁NO₅Na⁺ [M + Na]⁺ 448.2094; found, 448.2092.

Methyl 2-(*N*-(benzyloxy)methacrylamido)-2-phenylacetate (4aa)

Yellow oil (60%, 40.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40-7.36 (m, 6H), 7.35-7.32 (m, 4H), 5.96 (s, 1H), 5.67 (s, 1H), 5.19 (t, *J* = 1.7 Hz, 1H), 5.00 (s, 2H), 3.48 (s, 3H), 1.87 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 153.5, 136.9, 135.7, 135.6, 129.0, 128.8, 128.6, 128.4, 128.1, 127.4, 119.1, 81.0, 52.1, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₀H₂₁NO₄Na⁺ [M + Na]⁺ 362.1363; found, 362.1367.

Methyl 2-(N-(benzyloxy)methacrylamido)-2-(p-tolyl)acetate (4ba)

Yellow oil (55%, 38.8 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.32 (m, 5H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.93 (s, 1H), 5.66 (s, 1H), 5.18 (s, 1H), 4.99 (s, 2H), 3.47 (s, 3H), 2.33 (s, 3H), 1.86 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.2, 153.6, 138.9, 136.9, 135.7, 132.7, 129.3, 128.8, 128.3, 128.0, 127.4, 119.1, 80.8, 77.0, 52.1, 21.3, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for $C_{21}H_{23}NO_4Na^+$ [M + Na]⁺ 376.1519; found, 376.1523.

Methyl 2-(*N*-(benzyloxy)methacrylamido)-2-(4-(trifluoromethyl)phenyl)acetate (4ca)

Yellow oil (51%, 41.5 mg). ¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.37-7.33 (m, 5H), 6.01 (s, 1H), 5.70 (s, 1H), 5.23 (t, J = 1.6 Hz, 1H), 4.98 (d, J = 1.7 Hz, 2H), 3.50 (s, 3H), 1.88 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 153.1, 139.5, 136.7, 135.5, 131.2, 130.9, 128.9, 128.4, 128.2, 127.6, 125.5 (q, $J_{CF} = 3.8$ Hz), 119.2, 80.2, 77.2, 52.4, 18.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.72 (3F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₂₁H₂₀F₃NO₄Na⁺ [M + Na]⁺ 430.1237; found, 430.1234.

Methyl 2-(*N*-(benzyloxy)methacrylamido)-2-(4-fluorophenyl)acetate (4da) Yellow oil (54%, 38.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 7H), 7.02-6.97 (m, 2H), 5.95 (s, 1H), 5.66 (s, 1H), 5.19 (t, J = 1.6 Hz, 1H), 4.99 (s, 2H), 3.49 (s, 3H), 1.86 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 163.0 (d, $J_{CF} = 248.4$ Hz), 153.3, 136.8, 135.6, 131.5 (d, $J_{CF} = 3.3$ Hz), 129.3 (d, $J_{CF} = 8.5$ Hz), 128.9, 128.4, 128.2, 119.1, 115.6 (d, $J_{CF} = 21.6$ Hz), 80.1, 77.1, 52.2, 18.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.37 (1F, s) ppm. HRMS (ESI) (m/z): calculated for C₂₀H₂₀FNO₄Na⁺ [M + Na]⁺ 380.1269; found, 380.1268.

Methyl 2-(N-(benzyloxy)methacrylamido)-2-(4-chlorophenyl)acetate (4ea)

Yellow oil (56%, 41.8 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37-7.35 (m, 5H), 7.33-7.29 (m, 4H), 5.93 (s, 1H), 5.66 (s, 1H), 5.20 (t, J = 1.6 Hz, 1H), 4.98 (s, 2H), 3.49 (s, 3H), 1.87 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 153.2, 136.7, 135.6, 135.0, 134.2, 128.9, 128.8, 128.7, 128.4, 128.2, 119.1, 80.1, 77.1, 52.2, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₀H₂₀ClNO₄Na⁺ [M + Na]⁺ 396.0973; found, 396.0976.

Methyl 2-(*N*-(benzyloxy)methacrylamido)-2-(3-chlorophenyl)acetate (4fa)

Yellow oil (44%, 32.8 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.34 (m, 6H), 7.33-7.27 (m, 3H), 5.93 (s, 1H), 5.68 (s, 1H), 5.22 (t, J = 1.6 Hz, 1H), 4.98 (d, J = 1.8 Hz, 2H), 3.50 (s, 3H), 1.88 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 153.2, 137.6, 136.7, 135.5, 134.4, 129.9, 129.2, 128.9, 128.4, 128.2, 127.5, 125.4, 119.2, 80.1, 77.1, 52.3, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₀H₂₀ClNO₄Na⁺ [M + Na]⁺ 396.0973; found, 396.0974.

Methyl 2-(*N*-(benzyloxy)methacrylamido)-2-(3,4-dichlorophenyl)acetate (4ga) Yellow oil (46%, 37.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.0 Hz, 1H), 7.39-7.33 (m, 6H), 7.22 (dd, *J* = 8.3, 2.1 Hz, 1H), 5.90 (s, 1H), 5.69 (s, 1H), 5.23 (t, *J* = 1.7 Hz, 1H), 4.97 (d, *J* = 2.4 Hz, 2H), 3.51 (s, 3H), 1.88 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 153.0, 136.6, 135.8, 135.5, 133.2, 132.7, 130.6, 129.3, 128.9, 128.4, 128.3, 126.5, 119.2, 79.5, 77.2, 52.4, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₀H₁₉Cl₂NO₄Na⁺ [M + Na]⁺ 430.0583; found, 430.0581.

Methyl 2-(N-(benzyloxy)methacrylamido)-2-(naphthalen-2-yl)acetate (4ha)

Yellow oil (47%, 36.6 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.83-7.78 (m, 4H), 7.55-7.48 (m, 3H), 7.41-7.33 (m 5H), 6.12 (s, 1H), 5.70 (s, 1H), 5.18 (t, *J* = 1.6 Hz, 1H), 5.01 (d, *J* = 2.2 Hz, 2H), 3.49 (s, 3H), 1.87 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 153.6, 136.9, 135.6, 133.5, 133.0, 133.0, 128.8, 128.5, 128.4, 128.3, 128.1, 127.7, 127.2, 126.6, 126.4, 124.5, 119.2, 81.1, 77.1, 52.2, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₃NO₄Na⁺ [M + Na]⁺ 412.1519; found, 412.1522.

Ethyl 2-(N-(benzyloxy)methacrylamido)-2-phenylacetate (4ia)

Yellow oil (50%, 35.3 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.40 (m, 2H), 7.38-7.35 (m, 4H), 7.34-7.32 (m, 4H), 5.99 (s, 1H), 5.69 (s, 1H), 5.19 (t, *J* = 1.6 Hz, 1H), 5.00 (s, 2H), 4.04-3.94 (m, 2H), 1.86 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 153.4, 137.1, 135.8, 135.7, 128.9, 128.7, 128.5, 128.3, 128.0, 127.4, 119.1, 81.0, 76.9, 61.2, 18.8, 14.0 ppm. **HRMS** (ESI) (m/z): calculated for C₂₁H₂₃NO₄Na⁺ [M + Na]⁺ 376.1519; found, 376.1523.

Hexyl 2-(N-(benzyloxy)methacrylamido)-2-phenylacetate (4ja)

Yellow oil (40%, 32.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.40 (m, 2H), 7.39-7.36 (m, 4H), 7.34-7.31 (m, 4H), 6.02 (s, 1H), 5.71 (s, 1H), 5.19 (t, *J* = 1.6 Hz, 1H), 4.99 (s, 2H), 4.02-3.95 (m, 1H), 3.88-3.82 (m, 1H), 1.86 (s, 3H), 1.45 (q, *J* = 6.9 Hz, 2H), 1.28-1.25 (m, 1H), 1.22-1.20 (m, 1H), 1.17-1.12 (m, 4H), 0.83 (t, *J* = 6.9 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 153.4, 137.1, 135.9, 135.8, 128.9, 128.6, 128.5, 128.3, 128.0, 127.4, 119.0, 81.0, 76.9, 65.3, 31.3, 28.3, 25.3, 22.5, 18.8, 14.0 ppm. **HRMS** (ESI) (m/z): calculated for C₂₅H₃₁NO₄Na⁺ [M + Na]⁺ 432.2145; found, 432.2142.

Isopropyl 2-(N-(benzyloxy)methacrylamido)-2-phenylacetate (4ka)

Yellow oil (55%, 40.4 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42-7.36 (m, 6H), 7.34-7.31 (m, 4H), 6.02 (s, 1H), 5.72 (s, 1H), 5.19 (s, 1H), 5.00 (s, 2H), 4.97-4.91 (m, 1H), 1.86 (s, 3H), 1.14 (d, *J* = 6.3 Hz, 3H), 1.05 (d, *J* = 6.3 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 153.3, 137.3, 135.9, 135.8, 128.8, 128.5, 128.5, 128.3, 127.9, 127.4, 119.0, 81.0, 76.8, 69.0, 21.6, 21.4, 18.8 ppm. **HRMS** (ESI) (m/z): calculated for C₂₂H₂₅NO₄Na⁺ [M + Na]⁺ 390.1676; found, 390.1675.

Cyclobutyl 2-(N-(benzyloxy)methacrylamido)-2-phenylacetate (4la)

Yellow oil (47%, 35.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.39 (m, 2H), 7.38-7.35 (m, 4H), 7.34-7.32 (m, 4H), 6.01 (s, 1H), 5.70 (s, 1H), 5.19 (t, *J* = 1.6 Hz, 1H), 5.00 (s, 2H), 4.84 (p, *J* = 7.4 Hz, 1H), 2.26-2.19 (m, 2H), 1.98-1.89 (m, 1H), 1.86 (s, 3H), 1.86-1.79 (m, 1H), 1.73-1.65 (m, 1H), 1.57-1.49 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 153.3, 137.2, 135.8, 135.7, 128.9, 128.6, 128.5, 128.3, 128.0, 127.5, 119.0, 80.8, 76.9, 69.7, 30.0, 30.0, 18.8, 13.5 ppm. HRMS (ESI) (m/z): calculated for $C_{23}H_{25}NO_4Na^+$ [M + Na]⁺ 402.1676; found, 402.1678.

2-Methylallyl 2-(*N*-(benzyloxy)methacrylamido)-2-phenylacetate (4ma)

Yellow oil (33%, 25.0 mg). ¹H NMR (400 MHz, CDCl₃) & 7.43-7.40 (m, 2H), 7.38-7.36 (m, 4H), 7.34-7.32 (m, 4H), 6.06 (s, 1H), 5.72 (s, 1H), 5.20 (t, J = 1.6 Hz, 1H), 4.99 (d, J = 1.8 Hz, 2H), 4.76 (d, J = 19.3 Hz, 2H), 4.44 (d, J = 13.2 Hz, 1H), 4.21 (d, J = 13.2 Hz, 1H), 1.86 (s, 3H), 1.53 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 153.3, 139.4, 137.0, 135.8, 135.7, 129.0, 128.7, 128.5, 128.3, 128.0, 127.4, 119.1, 113.0, 81.0, 76.9, 68.1, 19.2, 18.8 ppm. HRMS (ESI) (m/z): calculated for C₂₃H₂₅NO₄Na⁺ [M + Na]⁺ 402.1676; found, 402.1678.

Benzyl 2-(N-(benzyloxy)methacrylamido)-2-phenylacetate (4na)

Yellow oil (58%, 48.2 mg). ¹H NMR (400 MHz, CDCl₃) & 7.41-7.38 (m, 2H), 7.33-7.30 (m, 8H), 7.26-7.25 (m, 3H), 7.15-7.11 (m, 2H), 6.03 (s, 1H), 5.67 (s, 1H), 5.17 (t, J = 1.7 Hz, 1H), 5.00-4.89 (m, 4H), 1.85 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 153.4, 137.1, 135.7, 135.6, 135.4, 129.0, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 128.0, 127.4, 119.1, 81.0, 76.8, 66.7, 18.8 ppm. HRMS (ESI) (m/z): calculated for $C_{26}H_{25}NO_4Na^+$ [M + Na]⁺ 438.1676; found, 438.1675.

Methyl 2-(N-(benzyloxy)benzamido)-2-phenylacetate (4ab) Yellow oil (51%, 38.3 mg). ¹H NMR (400 MHz, CDCl₃) & 7.79-7.76 (m, 2H), 7.49-

7.46 (m, 2H), 7.44-7.39 (m, 3H), 7.38-7.35 (m, 6H), 7.33-7.31 (m, 2H), 6.24 (s, 1H), 5.08 (s, 2H), 3.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 151.9, 137.0, 135.5, 131.3, 130.0, 129.1, 128.7, 128.7, 128.4, 128.1, 128.1, 127.4, 127.0, 81.2, 52.2 ppm. HRMS (ESI) (m/z): calculated for C₂₃H₂₁NO₄Na⁺ [M + Na]⁺ 398.1363; found, 398.1366.

Methyl 2-(N-(benzyloxy)-4-methylbenzamido)-2-phenylacetate (4ac)

Yellow oil (43%, 33.5 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.48-7.45 (m, 2H), 7.43-7.39 (m, 3H), 7.38-7.34 (m, 5H), 7.11 (d, J = 8.0 Hz, 2H), 6.20 (s, 1H), 5.06 (s, 2H), 3.51 (s, 3H), 2.34 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 152.3, 140.2, 137.1, 135.6, 129.1, 128.9, 128.7, 128.7, 128.4, 128.4, 128.0, 127.4, 127.0, 81.1, 52.2, 21.4 ppm. **HRMS** (ESI) (m/z): calculated for C₂₄H₂₃NO₄Na⁺ [M + Na]⁺ 412.1519; found, 412.1520.

Methyl 2-(*N*-(benzyloxy)-4-(tert-butyl)benzamido)-2-phenylacetate (4ad)

Yellow oil (59%, 50.9 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.5 Hz, 2H), 7.49-7.47 (m, 2H), 7.43-7.41 (m, 2H), 7.39-7.32 (m, 8H), 6.21 (s, 1H), 5.06 (s, 2H), 3.51 (s, 3H), 1.29 (s, 9H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 153.3, 152.2, 137.2, 135.7, 129.1, 128.7, 128.7, 128.4, 128.4, 128.0, 127.4, 126.8, 125.1, 81.1, 77.0, 52.2, 34.7, 31.2 ppm. **HRMS** (ESI) (m/z): calculated for C₂₇H₂₉NO₄Na⁺ [M + Na]⁺ 454.1989; found, 454.1989.

Methyl 2-(*N*-(benzyloxy)-4-(trifluoromethyl)benzamido)-2-phenylacetate (4ae) Yellow oil (45%, 39.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.47-7.44 (m, 2H), 7.43-7.39 (m, 4H), 7.38-7.34 (m, 4H), 6.33 (s, 1H), 5.09 (s, 2H), 3.53 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 150.4, 136.7, 135.2, 135.0, 131.8, 131.5, 129.4, 128.8, 128.8, 128.5, 128.3, 127.4, 127.2, 125.1 (q, $J_{CF} = 4.0$ Hz), 81.3, 77.5, 52.3 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.80 (3F, s) ppm. HRMS (ESI) (m/z): calculated for C₂₄H₂₀F₃NO₄Na⁺ [M + Na]⁺ 466.1237; found, 466.1240.

Methyl 2-(N-(benzyloxy)-4-fluorobenzamido)-2-phenylacetate (4af)

Yellow oil (37%, 29.1 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.75 (m, 2H), 7.47-7.44 (m, 2H), 7.43-7.39 (m, 3H), 7.38-7.35 (m, 5H), 7.02-6.96 (m, 2H), 6.27 (s, 1H), 5.06 (s, 2H), 3.52 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.9, 164.0 (d, $J_{CF} =$ 249.2 Hz), 151.1, 136.9, 135.4, 129.2, 129.1 (d, $J_{CF} = 8.7$ Hz), 128.8, 128.7, 128.4, 128.1, 127.5 (d, $J_{CF} = 3.2$ Hz), 127.4, 115.2 (d, $J_{CF} = 21.7$ Hz), 81.2, 77.2, 52.3 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.74 (1F, s) ppm. **HRMS** (ESI) (m/z): calculated for C₂₃H₂₀FNO₄Na⁺ [M + Na]⁺ 416.1269; found, 416.1271.

Methyl 2-(N-(benzyloxy)-4-chlorobenzamido)-2-phenylacetate (4ag)

Yellow oil (54%, 44.2 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.46-7.43 (m, 2H), 7.42-7.38 (m, 4H), 7.37-7.34 (m, 4H), 7.30-7.26 (m, 2H), 6.27 (s, 1H), 5.06 (s, 2H), 3.52 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 150.9, 136.8, 136.1, 135.3, 129.9, 129.3, 128.8, 128.7, 128.4, 128.4, 128.3, 128.2, 127.4, 81.2, 77.3, 52.3 ppm. **HRMS** (ESI) (m/z): calculated for C₂₃H₂₀ClNO₄Na⁺ [M + Na]⁺ 432.0973; found, 432.0973.

Methyl 2-(*N***-(benzyloxy)-4-bromobenzamido)-2-phenylacetate (4ah)** Yellow oil (69%, 62.7 mg). ¹**H NMR** (400 MHz, CDCl₃) δ 7.68-7.64 (m, 2H), 7.46-7.42 (m, 5H), 7.40 (s, 2H), 7.38-7.35 (m, 5H), 6.27 (s, 1H), 5.06 (s, 2H), 3.52 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 169.8, 151.0, 136.8, 135.3, 131.3, 130.4, 129.3, 128.8, 128.7, 128.5, 128.4, 128.2, 127.4, 124.5, 81.2, 77.3, 52.3 ppm. **HRMS** (ESI) (m/z): calculated for C₂₃H₂₀BrNO₄Na⁺ [M + Na]⁺ 476.0468; found, 476.0468.

2-(4-(N-(benzyloxy)-2-bromo-2-methylpropanamido)butoxy)-2-

phenylacetate (10)

¹**H NMR** (400 MHz, CDCl₃) δ 7.45-7.43 (m, 2H), 7.37-7.30 (m, 8H), 4.96 (s, 2H), 4.85 (s, 1H), 4.37-4.34 (m, 2H), 3.69 (s, 3H), 3.57-3.52 (m, 1H), 3.48-3.42 (m, 1H), 1.89 (s, 6H), 1.81-1.75 (m, 4H) ppm. ¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 157.4, 137.3, 136.6, 128.7, 128.6, 128.4, 128.4, 128.0, 127.2, 81.0, 73.5, 69.4, 61.0, 52.3, 31.5, 26.7, 25.9 ppm.

5. References

[1] J. Zheng, J. Qi and S. Cui, Fe-Catalyzed olefin hydroamination with diazo compounds for hydrazone synthesis, *Org. Lett.*, 2016, **18**, 128–131.

[2] V. Klöpfer, R. Eckl, J. Floß, P. M. C. Roth, O. Reiser and J. P. Barham, Catalystfree, scalable heterocyclic flow photocyclopropanation, *Green Chem.*, 2021, **23**, 6366–6372.

[3] M. C. DiPoto and J. Wu, Synthesis of 2-aminoimidazolones and imidazolones by (3 + 2) annulation of azaoxyallyl cations, *Org. Lett.*, 2018, 20, 499–501.

6. Copies of ¹H NMR and ¹³C NMR Spectra

Fig. S3 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3aa.

Fig. S4 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3aa.

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3ba**.

Fig. S6 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ba.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3ca**.

Fig. S8 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ca.

Fig. S9 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 3ca.

Fig. S10 1 H NMR spectrum (400 MHz, CDCl₃) of compound 3da.

Fig. S11 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3da.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Fig. S12 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 3da.

$\begin{array}{c} & -0.00\\$

Fig. S13 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ea.

Fig. S14 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ea.

Fig. S15 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3fa.

Fig. S16¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3fa.

Fig. S17¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ga.

Fig. S18¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ga.

Fig. S19 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3ha**.

Fig. S20 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ha.

$\begin{array}{c} 7.56\\ 7.56\\ 7.57\\ 7.53\\ 7.56\\ 7.52\\ 7.53\\ 7.52\\$

Fig. S21 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ia.

Fig. S22 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ia.

Fig. S23 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ja.

Fig. S24 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ja.

Fig. S25 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ka.

Fig. S26 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ka.

Fig. S27 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3la.

Fig. S28¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3la.

Fig. S29 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3ma**.

Fig. S30 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ma.

Fig. S31 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3na.

Fig. S32 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3na.

Fig. S33 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 30a.

Fig. S34 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 30a.

Fig. S35 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3pa.

Fig. S36 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3pa.

Fig. S37 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3qa.

Fig. S38 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3qa.

Fig. S39 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ra.

Fig. S40 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ra.

Fig. S41 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ab.

Fig. S42 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ab.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Fig. S43 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 3ab.

Fig. S44 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3nb**.

Fig. S45 13 C NMR spectrum (100 MHz, CDCl₃) of compound **3nb**.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

Fig. S46¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 3nb.

Fig. S47 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ad.

Fig. S48 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ad.

Fig. S49 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ag.

Fig. S50 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ag.

Fig. S51 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3ah**.

Fig. S52 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ah.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Fig. S53 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 3ah.

Fig. S54 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ai.

Fig. S55 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **3ai**.

7.7.58 7.7.58 7.7.57 7.7.55 7.7.55 7.7.55 7.7.55 7.7.55 7.7.7 7.7.44 7.7.74 7.74 7

Fig. S56 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3aj.

Fig. S57 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3aj.

Fig. S58 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3ak.

Fig. S59 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3ak.

Fig. S60 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3al.

Fig. S61 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3al.

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ^{f1 (ppm)} **Fig. S62** ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound **3al**.

Fig. S63 ¹H NMR spectrum (400 MHz, CDCl₃) of compound **3am**.

Fig. S64 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3am.

Fig. S65 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 5.

Fig. S66¹³C NMR spectrum (100 MHz, CDCl₃) of compound 5.

Fig. S67 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4aa.

Fig. S68 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4aa.

Fig. S69 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ba.

Fig. S70 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ba.

Fig. S71 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ca.

Fig. S72 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ca.

Fig. S73 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 4ca.

Fig. S74 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4da.

Fig. S75 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4da.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Fig. S76¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 4da.

Fig. S77¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ea.

Fig. S78¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ea.

Fig. S79 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4fa.

Fig. S80 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4fa.

Fig. S81 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ga.

Fig. S82 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ga.

Fig. S83 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ha.

Fig. S84 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ha.

Fig. S85 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ia.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S86 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ia.

Fig. S87 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ja.

Fig. S88 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ja.

Fig. S89 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ka.

Fig. S90 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ka.

Fig. S91 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4la.

Fig. S92 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4la.

4ma

Fig. S93 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ma.

Fig. S94 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ma.

Fig. S95 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4na.

Fig. S96 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4na.

-3.51

Fig. S97 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ab.

Fig. S98 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ab.

Fig. S99 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ac.

Fig. S100 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ac.

Fig. S101 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ad.

Fig. S102 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ad.

Fig. S103 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ae.

Fig. S104 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ae.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Fig. S105 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 4ae.

Fig. S106 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4af.

Fig. S107 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4af.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Fig. S108 ¹⁹F NMR spectrum (376 MHz, CDCl₃) of compound 4af.

Fig. S109 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ag.

Fig. S110 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ag.

-0.00

Fig. S111 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4ah.

-5.06

-3.52

Fig. S112 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4ah.

Fig. S113 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 10.

Fig. S114 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 10.