Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Stereoselective Synthesis of (E)-α,β-Unsaturated Esters: Triethylamine-Catalyzed Allylic Rearrangement of Enol Phosphates

Yulong Zhang, Huichuang Guo, Qian Wu, Xiaojing Bi*, Enxue Shi*, and Junhua Xiao*

The corresponding authors: State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China

E-mail: xiao.junhua@pku.edu.cn; exshi@sina.com; xiaojingbimail@yeah.net

Table of Contents

General information	3
General procedure for synthesis of EPs 4	4
General procedure for synthesis of α , β -unsaturated esters 6	8
Synthesis of the (Z) and (E) isomers of 6a using 2-chloroacetoacetate	15
Spectra of products 4 & 6	16
X-ray crystal structure of product 4f	53

General information

All reactions were carried out in oven-dried glassware with magnetic stirring bar. Dry solvents (THF, toluene, CH₃CN and DCM) were obtained by solvent purification system under argon. All commercially available reagents were used as received without further purification. Purification of products was carried out by flash column chromatography using silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on 0.25 mm aluminum-backed silica gel 60-F plates. Visualization was accompanied with UV light and KMnO₄ solution. Concentration under reduced pressure refers to the removal of volatiles using a rotary evaporator attached to a dry diaphragm pump (10-15 mm Hg) followed by pumping to a constant weight with an oil pump (< 300 mTorr). High-resolution mass spectra (HRMS) were recorded on LCMS-IT-TOF mass spectrometer using ESI (electrospray ionization) or APCI (Atmospheric Pressure Chemical Ionization). ¹H NMR spectra were recorded in CDCl₃ on 600 MHz and 300 MHz NMR spectrometer. The ¹H chemical shifts are referenced to residual solvent signals at δ 7.26 (CHCl₃) or δ 0.00 (TMS). ¹H NMR coupling constants (J) are reported in Hertz (Hz) and multiplicities are indicated as follows: s (singlet), app s (apparent singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), td (triplet of doublets), tt (triplet of triplets). ¹³C NMR spectra were proton decoupled and recorded in CDCl₃ on 151 MHz and 75 MHz NMR spectrometer. The 13 C chemical shifts are referenced to solvent signals at δ 77.16 (CDCl₃). ³¹P NMR spectra were proton decoupled and recorded in CDCl₃ on 243 MHz and 122 MHz NMR spectrometer.

General procedure for synthesis of EPs 4

$$R^{4}O-P \begin{pmatrix} R^{2} \\ R^{3} \\ 1 \end{pmatrix} \xrightarrow{1.3 (1 eq) / 40 °C, neat;}{2. Et_{3}N (0.1 eq) / rt, CH_{3}CN} \xrightarrow{R^{2} | I \\ R^{3} P \\ 0 \end{pmatrix} \xrightarrow{0} OR^{1}$$

To an oven dried 10 mL test tube with a stir bar was added phosphite **1** (1.0 equiv, 1.0 mmol) and 4-chloroacetoacetate **3** (1.0 equiv, 1.0 mmol). After stirring for 2 h at 40 °C, the reaction mixture was then cooled to room temperature followed by the addition of a solution of triethylamine (10 mol%) and 3 mL of dry CH₃CN. After stirring for 12 h at room temperature, the resulting mixture was concentrated to give the crude product which was then purified by column chromatography on silica gel (PE/EA = 1:1) to afford the product of conjugated *E*- β -phosphoroxylated α , β -unsaturated ester **4**.

(E)-ethyl 3-((diethoxyphosphoryl)oxy)but-2-enoate (4a):

92% yield, brown oil. $R_f = 0.45$ (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 5.77 (s, 1H), 4.38– 3.87 (m, 6H), 2.36 (s, 3H), 1.34 (t, J = 7.1 Hz, 6H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.28, 163.14 (d, J = 6.0 Hz), 106.06 (d, J = 4.5 Hz), 64.74 (d, J = 7.5 Hz), 60.06, 18.49, 18.46. ³¹P NMR (243 MHz, CDCl₃) δ -8.14; HRMS (ESI-MS) [M+H]⁺: found 267.0909; calculated for C₁₀H₂₀O₆P: 267.0919.

(E)-ethyl 3-((diisopropoxyphosphoryl)oxy)but-2-enoate (4b):

96% yield, brown oil. $R_f = 0.32$ (PE/EA= 1:1). ¹H NMR (300 MHz, CDCl₃) δ 5.71 (s, 1H), 4.76– 4.43 (m, 2H), 4.19–3.85 (m, 2H), 2.30 (s, 3H), 1.28 (s, 12H), 1.21–1.07 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.34, 163.71–162.66 (m), 105.67 (d, J = 5.1 Hz), 73.73 (d, J = 6.2 Hz), 59.91, 24.39–22.12 (m), 18.48 (d, J = 4.6 Hz), 14.15; ³¹P NMR (121 MHz, CDCl₃) δ -9.94; HRMS (ESI-MS) [M+H]⁺: found 295.127; calculated for C₁₂H₂₄O₆P: 295.1232. (E)-ethyl 3-((dibutoxyphosphoryl)oxy)but-2-enoate (4c):

90% yield, colorless oil, $R_f = 0.52$ (PE/EA= 1:1). ¹H NMR (300 MHz, CDCl₃) δ 5.72 (s, 1H), 4.45–3.70 (m, 6H), 2.59–1.96 (m, 3H), 1.70–1.53 (m, 4H), 1.42–1.26 (m, 4H), 1.23–1.12 (m, 3H), 0.95–0.75 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.23, 163.16 (d, J = 8.2 Hz), 110.93–99.91 (m), 68.36 (d, J = 6.3 Hz), 59.99, 32.06 (d, J = 6.9 Hz), 18.54, 18.42 (d, J = 5.2 Hz), 14.15, 13.45; ³¹P NMR (121 MHz, CDCl₃) δ -7.94; HRMS (ESI-MS) [M+H]⁺: found 323.1549; calculated for C₁₄H₂₈O₆P: 323.1545.

(E)-ethyl 3-(((diethylamino)(isopropoxy)phosphoryl)oxy)but-2-enoate (4d):

90% yield, colorless oil. $R_f = 0.44$ (PE/EA= 1:1). ¹H NMR (300 MHz, CDCl₃) δ 5.82 (s, 1H), 4.29–3.91 (m, 2H), 3.68 (d, J = 11.6 Hz, 3H), 3.41 (dp, J = 20.2, 6.7 Hz, 2H), 2.33 (s, 3H), 1.20 (d, J = 6.8 Hz, 15H); ¹³C NMR (75 MHz, CDCl₃) δ 166.86, 164.05 (d, J = 8.7 Hz), 105.01 (d, J = 5.3Hz), 59.80, 52.89 (d, J = 5.8 Hz), 46.38 (d, J = 4.9 Hz), 22.37 (d, J = 26.2 Hz), 18.81 (d, J = 5.2Hz), 14.25; ³¹P NMR (121 MHz, CDCl₃) δ 3.32; HRMS (ESI-MS) [M+H]⁺: found 308.1552; calculated for C₁₃H₂₇NO₅P: 308.1549.

(E)-ethyl 3-((methoxy(phenyl)phosphoryl)oxy)but-2-enoate (4e):

96% yield, white solid, **m.p.** = 98–108 °C, $R_f = 0.36$ (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 7.80 (dd, J = 13.9, 8.1 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.51–7.41 (m, 2H), 5.77 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.81 (d, J = 11.5 Hz, 3H), 2.33 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.26 , 163.23 (d, J = 8.7 Hz), 133.21 (d, J = 3.1 Hz), 131.86 (d, J = 10.3 Hz), 128.71 (d, J = 15.7 Hz), 126.50 (d, J = 191.8 Hz), 106.58 (d, J = 5.3 Hz), 60.04, 53.12 (d, J = 5.9Hz), 18.99 (d, J = 4.1 Hz), 14.18; ³¹P NMR (243 MHz, CDCl₃) δ 15.95; HRMS (ESI-MS) [M+H]⁺: found 285.085; calculated for C₁₃H₁₈O₅P: 285.0814. (E)-ethyl 3-((diphenylphosphoryl)oxy)but-2-enoate (4f):

90% yield, white solid, **m.p.** = 99–104 °C, $R_f = 0.34$ (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 7.84–7.80 (m, 4H), 7.56–7.54 (m, 2H), 7.48–7.45 (m, 4H), 5.88 (s, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.39 , 163.77 (d, *J* = 9.7 Hz), 132.72 (d, *J* = 2.7 Hz), 131.54 (d, *J* = 10.5 Hz), 130.62 (d, *J* = 138.3 Hz), 128.74 (d, *J* = 13.6 Hz), 106.58 (d, *J* = 5.8 Hz), 59.99, 19.41 (d, *J* = 4.3 Hz), 14.18; ³¹P NMR (243 MHz, CDCl₃) δ 30.29; HRMS (ESI-MS) [M+H]⁺: found 331.1028; calculated for C₁₈H₂₀O₄P: 331.1021.

(E)-ethyl 3-((dimethoxyphosphoryl)oxy)but-2-enoate (4g):

90% yield, slightly yellow oil. $R_f = 0.38$ (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 5.73 (s, 1H), 4.09 (q, J = 6.8 Hz, 2H), 3.78 (d, J = 12.2 Hz, 6H), 2.34 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.07, 162.90 (d, J = 7.5 Hz), 109.99, 106.25 (d, J = 6.0 Hz), 60.09, 54.91 (d, J = 7.5 Hz), 18.33 (d, J = 4.5 Hz), 14.13; ³¹P NMR (243 MHz, CDCl₃) δ -5.93; HRMS (ESI-MS) [M+H]⁺: found 239.0609; calculated for C₈H₁₆O₆P: 239.0606.

(E)-methyl 3-((diethoxyphosphoryl)oxy)but-2-enoate (4h):

92% yield, colorless oil, $R_f = 0.34$ (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 5.80 (s, 1H), 4.18 (p, J = 7.3 Hz, 4H), 3.68 (s, 3H), 2.38 (s, 3H), 1.35 (t, J = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 166.74, 163.45 (d, J = 7.5 Hz), 105.61 (d, J = 6.0 Hz), 64.78 (d, J = 7.5 Hz), 51.27, 18.51 (d, J = 6.0 Hz), 16.01 (d, J = 6.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -8.17; HRMS (ESI-MS) [M+H]⁺: found 253.0768; calculated for C₉H₁₈O₆P: 253.0763.

(E)-isopropyl 3-((diethoxyphosphoryl)oxy)but-2-enoate (4i):

95% yield, colorless oil, Rf = 0.34 (PE/EA= 1:1). 1H NMR (300 MHz, CDCl₃) δ 5.67 (s, 1H), 4.92 (p, J = 6.2 Hz, 1H), 4.10 (p, J = 7.2 Hz, 4H), 2.29 (s, 3H), 1.27 (t, J = 7.1 Hz, 6H), 1.14 (d, J = 6.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 165.72, 162.80 (d, J = 8.4 Hz), 106.47 (d, J = 5.1 Hz), 67.30, 64.68 (d, J = 6.2 Hz), 21.78, 18.40 (d, J = 5.1 Hz), 15.96 (d, J = 6.7 Hz); ³¹P NMR (243 MHz, CDCl₃) δ -8.20; HRMS (ESI-MS) [M+H]⁺: found 281.1079; calculated for C₁₁H₂₂O₆P: 281.1076.

(E)-tert-butyl 3-((diethoxyphosphoryl)oxy)but-2-enoate (4j):

93% yield, colorless oil, Rf = 0.54 (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 5.68 (s, 1H), 4.14 (p, *J* = 7.4 Hz, 4H), 2.31 (s, 3H), 1.41 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 165.56, 162.02 (d, *J* = 9.0 Hz), 107.84 (d, *J* = 4.5 Hz), 80.31, 64.63 (d, *J* = 6.0 Hz), 28.12, 18.27 (d, *J* = 4.5 Hz), 15.95; ³¹P NMR (243 MHz, CDCl₃) δ -8.09; HRMS (ESI-MS) [M+H]⁺: found 295.1235; calculated for C₁₂H₂₄O₆P: 295.1232.

(E)-benzyl 3-((diethoxyphosphoryl)oxy)but-2-enoate (4k):

94% yield, colorless oil, Rf = 0.60 (PE/EA= 1:1). ¹H NMR (600 MHz, CDCl₃) δ 7.37–7.28 (m, 5H), 5.86 (s, 1H), 5.13 (s, 2H), 4.17 (t, *J* = 7.6 Hz, 4H), 2.40 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 166.11, 163.78, 135.94, 128.50, 128.15, 105.69 (d, *J* = 6.0 Hz), 65.96, 64.80 (d, *J* = 6.0 Hz), 18.61 (d, *J* = 4.5 Hz), 16.02 (d, *J* = 6.0 Hz); ³¹P NMR (243 MHz, CDCl₃) δ - 8.22; HRMS (ESI-MS) [M+H]⁺: found 329.2978; calculated for C₁₅H₂₂O₆P: 329.2974.

General procedure for synthesis of α , β -unsaturated esters 6

ArMgBr (1.5 mmol) was added to a stirred suspension of ZnCl₂ (1.5 mmol) in CH₃CN (3.0 mL) at 0-5 °C under N₂ atmosphere. The mixture was stirred at the same temperature for 0.5 h, then the β -phosphoroxylated α , β -unsaturated ester **4a** (1 mmol) in CH₃CN (5 mL) and Pd(dppb)Cl₂ (0.02 mmol) in CH₃CN (0.5 mL) were successively added and stirred at 60 °C for 2 h. After cooling down, aq.1 M HCl solution was added to the mixture which was extracted twice with AcOEt. The combined organic phase was washed with brine, dried (Na₂SO₄) and concentrated. The obtained crude product was then purified by SiO₂-column chromatography (hexane/AcOEt = 100:0 - 10:1) to give the desired product (*E*)-**6**.

(E)-ethyl 3-phenylbut-2-enoate (6a):

84% yield, colorless oil, Rf = 0.59 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.47 (s, 2H), 7.36 (s, 3H), 6.14 (s, 1H), 4.22 (q, *J* = 7.0 Hz, 2H), 2.59 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.90, 155.56, 142.22, 129.01, 128.51, 126.32, 117.18, 59.88, 17.97, 14.39; HRMS (ESI-MS) [M+H]⁺: found 191.0998; calculated for C₁₂H₁₅O₂: 191.0994.

(E)-ethyl 3-(p-tolyl)but-2-enoate (6b):

80% yield, colorless oil, Rf = 0.42 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.14 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.58 (d, *J* = 1.2 Hz, 3H), 2.37 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.04, 155.47, 139.23,

129.21, 126.24, 116.27, 59.81, 21.23, 17.83, 14.40; HRMS (ESI-MS) [M+H]⁺: found 221.1095; calculated for C₁₃H₁₆O₃: 221.1099.

(E)-ethyl 3-(m-tolyl)but-2-enoate (6c):

93% yield, colorless oil, Rf = 0.34 (PE/EA= 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.48–6.79 (m, 5H), 6.12 (s, 1H), 4.45–4.00 (m, 2H), 2.57 (s, 3H), 2.37 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.95, 155.80, 142.25, 138.11, 129.76, 128.40, 127.04, 123.47, 116.95, 59.84, 21.50, 18.01, 14.39; HRMS (ESI-MS) [M+H]⁺: found 205.2645; calculated for C₁₃H₁₇O₂: 205.2649.

(E)-ethyl 3-(o-tolyl)but-2-enoate (6d):

88% yield, colorless oil, Rf = 0.72 (PE/EA= 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.36–6.85 (m, 4H), 5.76 (s, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.45 (d, *J* = 1.3 Hz, 3H), 2.28 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.66, 158.35, 143.92, 133.87, 130.42, 127.72, 127.10, 125.77, 119.41, 59.85, 20.85, 19.77, 14.37; HRMS (ESI-MS) [M+H]⁺: found 205.1155; calculated for C₁₃H₁₇O₂: 205.1150.

(E)-ethyl 3-(4-ethylphenyl)but-2-enoate (6e):

94% yield, colorless oil, Rf = 0.62 (PE/EA= 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 6.16 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.67 (q, J = 7.6 Hz, 2H), 2.59 (d, J = 1.1 Hz, 3H), 1.29 (dt, J = 21.6, 7.4 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 167.01,

155.45, 145.45, 139.48, 128.01, 126.32, 116.33, 77.51, 77.09, 76.67, 59.78, 28.59, 17.83, 15.45, 14.39; HRMS (ESI-MS) [M+H]⁺: found 219.1309; calculated for C₁₄H₁₉O₂: 219.1307.

(E)-ethyl 3-(4-(tert-butyl)phenyl)but-2-enoate (6f):

92% yield, colorless oil, Rf = 0.62 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.66–7.30 (m, 4H), 6.17 (s, 1H), 4.41–4.06 (m, 2H), 2.59 (s, 3H), 1.34 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 167.05, 155.34, 152.32, 139.07, 126.08, 125.45, 116.36, 59.80, 34.68, 31.37, 17.79, 14.41; HRMS (ESI-MS) [M+H]⁺: found 247.1629; calculated for C₁₆H₂₂O₂: 247.1620.

(*E*)-ethyl 3-([1,1'-biphenyl]-4-yl)but-2-enoate (6g):

88% yield, colorless oil, Rf = 0.58 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.73–7.30 (m, 9H), 6.24 (s, 1H), 4.26 (q, *J* = 6.9 Hz, 2H), 2.65 (s, 3H), 1.35 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.94, 154.96, 141.86, 140.95, 140.29, 128.91, 127.69, 127.19, 127.08, 126.82, 116.97, 59.93, 17.84, 14.43; HRMS (ESI-MS) [M+H]⁺: found 267.1310; calculated for C₁₈H₁₉O₂: 267.1307.

(E)-ethyl 3-(4-fluorophenyl)but-2-enoate (6h):

95% yield, colorless oil, Rf = 0.82 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.54–7.33 (m, 2H), 7.03 (t, *J* = 8.5 Hz, 2H), 6.07 (s, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.71, 164.84, 161.54, 154.22, 138.15, 128.15, 117.06,

115.56, 115.28, 59.90, 17.91, 14.33; ¹⁹F NMR (282 MHz, CDCl₃) δ -105.69 - -118.10 (m); HRMS (ESI-MS) [M+H]⁺: found 209.0888; calculated for C₁₂H₁₄FO₂: 209.0900.

(E)-ethyl 3-(3-fluorophenyl)but-2-enoate (6i):

90% yield, colorless oil, Rf = 0.52 (PE/EA= 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.42–7.29 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 10.3 Hz, 1H), 7.05 (t, *J* = 8.2 Hz, 1H), 6.14 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.56 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.59, 164.40, 161.13, 154.77–152.61 (m), 144.41 (d, *J* = 7.3 Hz), 130.01 (d, *J* = 8.3 Hz), 121.98 (d, *J* = 2.8 Hz), 118.02, 115.79 (d, *J* = 21.2 Hz), 113.35 (d, *J* = 22.4 Hz), 60.03, 17.82, 14.33; ¹⁹F NMR (282 MHz, CDCl₃) δ -112.70 – -112.87 (m); HRMS (ESI-MS) [M+H]⁺: found 209.0905; calculated for C₁₂H₁₄FO₂: 209.0900.

(E)-ethyl 3-(4-chlorophenyl)but-2-enoate (6j):

96% yield, colorless oil, Rf = 0.64 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.48–7.28 (m, 4H), 6.11 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.67, 154.08, 140.52, 134.97, 128.70, 127.63, 117.49, 60.01, 17.82, 14.37; HRMS (ESI-MS) [M+H]⁺: found 225.0600; calculated for C₁₂H₁₃ClO₂: 225.0604.

(E)-ethyl 3-(4-methoxyphenyl)but-2-enoate (6k):

82% yield, colorless oil, Rf = 0.58 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 0H), 6.89 (d, *J* = 8.7 Hz, 0H), 6.11 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 0H), 3.82 (s, 0H), 1.31 (t, *J* =

7.1 Hz, 0H); ¹³C NMR (75 MHz, CDCl₃) δ 167.11, 160.41, 154.92, 134.29, 127.73, 115.29, 113.81, 59.75, 55.35, 17.67, 14.40; HRMS (ESI-MS) [M+H]⁺: found 221.1095; calculated for C₁₃H₁₆O₃: 221.1099.

(E)-ethyl 3-(3-methoxyphenyl)but-2-enoate (6l):

87% yield, colorless oil, Rf = 0.54 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.28 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.99 (s, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.13 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 3H), 2.56 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.85, 159.57, 155.44, 143.72, 129.51, 118.78, 117.28, 114.33, 112.05, 59.91, 55.29, 18.05, 14.38; HRMS (ESI-MS) [M+H]⁺: found 221.1103; calculated for C₁₃H₁₇O₃: 221.1099.

(*E*)-ethyl 3-(2-methoxyphenyl)but-2-enoate (6m):

94% yield, colorless oil, Rf = 0.72 (PE/EA= 20:1). ¹H NMR (300 MHz, CDCl₃) δ 7.29 (p, *J* = 9.3, 8.7 Hz, 1H), 7.14 (d, *J* = 7.4 Hz, 1H), 6.97–6.84 (m, 2H), 5.90 (s, 1H), 4.20 (q, *J* = 7.0 Hz, 2H), 3.81 (s, 3H), 2.50 (s, 3H), 1.51–1.12 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.80, 156.71, 156.31, 133.06, 129.50, 128.82, 120.55, 119.25, 110.96, 59.75, 55.44, 19.90, 14.39; HRMS (ESI-MS) [M+H]⁺: found 237.1415; calculated for C₁₄H₂₁O₃: 237.1412.

(E)-ethyl 3-(3,5-dimethylphenyl)but-2-enoatee (6n):

85% yield, colorless oil, Rf = 0.62 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.11 (s, 2H), 7.01 (s, 1H), 6.14 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.58 (s, 3H), 2.35 (s, 6H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.99, 156.03, 142.30, 138.00, 130.67, 124.21, 116.74, 59.81, 21.36, 18.05, 14.40; HRMS (ESI-MS) [M+H]⁺: found 219.1310; calculated for C₁₄H₁₉O₂: 219.1307.

(E)-ethyl 3-(2,5-dimethylphenyl)but-2-enoate (60):

90% yield, colorless oil, Rf = 0.57 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.05 (q, *J* = 7.8 Hz, 2H), 6.90 (s, 1H), 5.76 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.44 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.74, 158.56, 143.79, 135.21, 130.72, 130.34, 128.39, 127.76, 119.21, 59.83, 20.89, 19.28, 14.37; HRMS (ESI-MS) [M+H]⁺: found 219.1304; calculated for C₁₄H₁₉O₂: 219.1307.

(E)-ethyl 3-(naphthalen-1-yl)but-2-enoate (6p):

92% yield, colorless oil, Rf = 0.49 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.99–7.78 (m, 3H), 7.48 (dd, *J* = 18.1, 5.7 Hz, 3H), 7.31 (d, *J* = 6.9 Hz, 1H), 6.03 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.67 (s, 3H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.67, 157.18, 142.12, 133.71, 130.08, 128.51, 128.20, 126.33, 126.02, 125.38, 125.28, 124.25, 120.62, 60.00, 21.76, 14.42; HRMS (ESI-MS) [M+H]⁺: found 241.1150; calculated for C₁₆H₁₇O₂: 241.1150.

(E)-ethyl 3-(naphthalen-2-yl)but-2-enoate (6q):

89% yield, colorless oil, Rf = 0.69 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.96 (s, 1H), 7.92 - 7.76 (m, 3H), 7.61 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.52 (dt, *J* = 6.3, 3.2 Hz, 2H), 6.31 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.71 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.95, 155.30, 139.33, 133.49, 133.12, 128.54, 128.17, 127.61, 126.73, 126.54, 125.98, 123.98, 117.51, 59.96, 17.95, 14.44; HRMS (ESI-MS) [M+H]⁺: found 241.1153; calculated for C₁₆H₁₇O₂: 241.1150.

(*E*)-ethyl 3-(thiophen-2-yl)but-2-enoate (6r):

85% yield, colorless oil, Rf = 0.70 (PE/EA= 10:1). ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 4.2 Hz, 2H), 7.12–6.96 (m, 1H), 6.25 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.60 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.70, 147.77, 145.55, 127.93, 127.07, 126.71, 114.26, 77.56, 77.14, 76.71, 59.86, 17.28, 14.37; HRMS (ESI-MS) [M+H]⁺: found 197.0556; calculated for C₁₀H₁₃O₂S: 197.0558.

Synthesis of the (Z) and (E) isomers of **6a** using 2-chloroacetoacetate

ArMgBr (1.5 mmol) was added to a stirred suspension of ZnCl₂ (1.5 mmol) in CH₃CN (3.0 mL) at 0-5 °C under N₂ atmosphere, and then stirred at the same temperature for 0.5 h. The mixture of (*E*) and (*Z*)- β -phosphoroxylated α , β -unsaturated ester **4a** (1 mmol), derived according to the previous procedure, was dissolved in CH₃CN (1 mL) and Pd(dppb)Cl₂ (0.02 mmol) in CH₃CN (0.5 mL) were successively added to the mixture and stirred at 60 °C for 2 h. After cooling down, 1 M HCl solution was added to the mixture, which was extracted twice with AcOEt. The combined organic phase was washed with brine, dried (Na₂SO₄) and concentrated. The obtained crude product was purified by SiO₂-column chromatography (hexane/AcOEt = 100:0 –10:1) to give the desired product **6a** (*E* and *Z*-isomers).

(Z)-ethyl 3-phenylbut-2-enoate (6a):

22% yield, colorless oil, Rf = 0.62 (PE/EA= 10:1). 1H NMR (300 MHz, CDCl3) δ 7.33 (t, J = 7.1 Hz, 3H), 7.20 (d, J = 7.3 Hz, 2H), 5.92 (s, 1H), 4.00 (q, J = 7.1 Hz, 2H), 2.18 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 165.94, 155.40, 140.88, 127.90, 127.74, 126.83, 117.80, 59.77, 27.19, 13.99; HRMS (ESI-MS) [M+H]+: found 191.0990; calculated for C12H15O2: 191.0994.

Spectra of products **4** & **6** Compound 4a ¹H NMR

Compound 4a ¹³C NMR

Compound 4b ³¹P NMR

Compound 4c ¹H NMR

Compound 4d ³¹P NMR

^{110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170} f1 (ppm)

Compound 4e ¹H NMR

Compound 4f¹³C NMR

Compound 4f ³¹P NMR

Compound 4g ¹H NMR

Compound 4g ¹³C NMR

Compound 4h ¹³C NMR

Compound 4h ³¹P NMR

Compound 4i ¹H NMR

Compound 4i ¹³C NMR

130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -11 (ppm)

Compound 4j ¹H NMR

Compound 4j ¹³C NMR

Compound 4k ¹H NMR

Compound 4k ¹³C NMR

Compound E-6a ¹H NMR

Compound Z-6a ¹³C NMR

Compound 6c ¹³C NMR

Compound 6g ¹³C NMR

Compound 6h ¹⁹F NMR

Compound 6i ¹³C NMR

Compound 6j ¹H NMR

Compound 6j ¹³C NMR

46

Compound 6m ¹³C NMR

Compound 6n ¹H NMR

Compound 6n ¹³C NMR

Compound 6p ¹³C NMR

Compound 6q ¹³C NMR

Compound 6r ¹³C NMR

X-ray crystal structure of product ${\bf 4f}$

$\frac{Ph_{P_{O}} 0}{Ph_{O}} = 0$	
Identification code	4f
Empirical formula	$C_{18}H_{19}O_4P$
Formula weight	330.30
Temperature/K	169.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	6.1976(8)
b/Å	12.1637(13)
c/Å	12.6520(13)
$\alpha / ^{\circ}$	107.828(9)
β/°	102.923(10)
$\gamma/^{\circ}$	104.503(11)
Volume/Å ³	831.07(18)
Z	2
$\rho_{calc}g/cm^3$	1.320
µ/mm ⁻¹	1.619
F(000)	348.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 7.764 to 133.2
Index ranges	$-7 \le h \le 5, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	5688
Independent reflections	2912 [$R_{int} = 0.0988, R_{sigma} = 0.0746$]
Data/restraints/parameters	2912/0/210
Goodness-of-fit on F ²	1.113
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0931, wR_2 = 0.2526$
Final R indexes [all data]	$R_1 = 0.1060, wR_2 = 0.2603$
Largest diff. peak/hole / e Å-	3 0.81/-0.74