Electronic Supplementary Information

Machine learning of atomic force microscopy images of organic solar cells

Yasuhito Kobayashi,^{a,b} Yuta Miyake,^c Fumitaka Ishiwari,^{c,d,e} Shintaro Ishiwata^a and Akinori Saeki^{*,c,d}

^a Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-

3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

^b Interactive Materials Science CADET, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

^c Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

^d Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

^e PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.

AUTHOR INFORMATION

Corresponding Author

* saeki@chem.eng.osaka-u.ac.jp (A.S.)

This supporting information presents the following contents.

Supplementary Code ······S	2
Supplementary Tables S1–S11 ······S	3
Supplementary Figures S1–S5 ······ S1	4

Supplementary Code

The following is a python code for LASSO analysis. Ridge and RF analyses were also performed in the same manner. "Mord+Prop+Proc 890.csv" is a data file.

```
from sklearn.linear model import Lasso, Ridge
from sklearn.model selection import train test split, cross val score
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob, tqdm, math, optuna, json, pickle
from machine learning import calc metrics, data split, reconstruct linearmodel, plot yy, set plot params,
plot coef
df original = pd.read csv('./dataset/Mord+Prop+Proc 890.csv').set index('Unnamed: 0')
name = 'LASSO Original'
dataframe = df original
dataset = data split(dataframe, 'PCE max(%)', 0.3, random state=0)
model = Lasso()
def objective(trial):
  params = {'alpha': trial.suggest loguniform('alpha',0.00001,100)}
  model.set params(**params)
  scores = cross val score(
     model.
     dataset['x train'],
     dataset['y train'],
     cv=5,
     scoring='r2',
     n jobs=-1)
  val = scores.mean()
  return val
study = optuna.create study(
  study name = name,
  direction = 'maximize',
  sampler = optuna.samplers.TPESampler(seed=0),
  storage = f'sqlite:///./optuna {name}.db',
  load if exists = True
  )
study.optimize(objective, n trials=100, n jobs=-1)
with open(f'./Bayese {name}.pickle','wb') as f:
  pickle.dump(study,f,protocol=2)
### re-learning with tuned params
re model = Lasso(**study.best params)
metrics, df coef = reconstruct linearmodel(Lasso(**study.best params),dataset,name)
```

Supplementary Tables

Material properties			Pro	Process parameters	
Material	Parameter	Description	Parameter	Description	
NFA	-HOMO (eV)	Absolute HOMO	n/(p+n)	Blend ratio of polymer (p)	
				and NFA (n)	
	-LUMO (eV)	Absolute LUMO	Solvent_CF	chloroform	
	$E_{\rm g} ({\rm eV})$	Bandgap	Solvent_OX	o-xylene	
	M (g/mol)	Molecular weight	Solvent_TMB	1,2,4-trimethylbenzene	
Polymer	-HOMO (eV)	Absolute HOMO	Solvent_CB	chlorobenzene	
	-LUMO (eV)	Absolute LUMO	Solvent_THF	tetrahydrofuran	
	$E_{\rm g}({\rm eV})$	Bandgap	Solvent_AS	anisole	
	$M_{\rm w}$ (kg/mol)	Weight-averaged	Solvent_TL	toluene	
		molecular weight			
	$M_{\rm n}$ (kg/mol)	Number-averaged	Solvent_DCB	o-dichlorobenzene	
		molecular weight			
	PDI	Polydispersity index	Additive_NA	No additive	
Polymer:	$\Delta HOMO (eV)$	Difference of HOMOs of	Additive_CN	1-chloronaphthalene	
NFA		NFA and polymer			
	Δ LUMO (eV)	Difference of LUMOs of	Additive_DIO	1,8-diiodoocatane	
		NFA and polymer			
	Effective E_{g}	Difference of HOMO of	Additive_Bipy	Bipyridine	
	(eV)	polymer and LUMO of			
		NFA			
	$E_{\rm g,min}~({\rm eV})$	Minimum $E_{\rm g}$ value of	Additive_PN	1-phenylnapthalene	
		polymer and NFA			
			Additive_CBA	o-chlorobenzaldehyde	
			Additive_pyr	pyridine	
			Additive_NMP	N-methylpyrrolidone	
			Additive_BPO	4,4-biphenol	
			Additive_DPE	diphenylether	
			Additive_ODT	1,8-octanedithiol	
			Additive_DBE	dibenzyl ether	

Table S1. List of material properties and process parameters of OPVs.

From to	
1 2 2 ABCIndex Connectivity index	
3 14 12 AcidBase Acidic/basic group count	
15 16 2 AdjacencyMatrix SpAbs of adjacency matrix	
17 18 2 Aromatic Aromatic atoms, bond count	
19 35 17 AtomCount Atom count (C, H, ,,,)	
36 134 99 Autocorrelation Autocorrelation of Topological Structure	
descriptor (ATS)	
135 234 100 Autocorrelation Averaged ATS descriptor (AATS)	
235 341 107 Autocorrelation Centered ATS descriptor (ATSC)	
342 449 108 Autocorrelation Averaged ATSC descriptor (AATSC)	
450 545 96 Autocorrelation Moran coefficient descriptor (MATS)	
546 641 96 Autocorrelation Geary coefficient descriptor (GATS)	
642 665 24 BCUT Burden matrix (BCUT)	
666 666 1 BalabanJ Balaban's J index descriptor	
667 770 104 BaryszMatrix Barysz matrix descriptor (Sp)	
771 771 1 BertzCT Bertz CT descriptor	
772 780 9 BondCount Number of double bonds, etc	
781 782 2 CPSA relative negative/positive charge	
783 793 11 CarbonTypes SP carbon bound to 1 other carbon, etc	
79484956Chi3-ordered Chi chain weighted by sigma	
electrons, etc	
850 865 16 Constitutional Sum of constitutional descriptor	
866 879 14 DetourMatrix detour matrix descriptor.	
880 891 12 DistanceMatrix distance matrix descriptor	
892 1207 316 EState atom type e-state descriptor.	
1208 1208 1 EccentricConnectivityIndex eccentric connectivity index	
1209 1253 45 ExtendedTopochemicalAtom Extended Topochemical Atom(ETA) des	criptor
1254 1254 1 FragmentComplexity fragment complexity descriptor.	_
1255 1255 1 Framework molecular framework ratio	
1256 1257 2 HydrogenBond number of hydrogen bond acceptor/dono	•
1258 1299 42 InformationContent neighborhood information content descri	otor.
1300 1302 3 KappaShapeIndex Kappa shape index 1 descriptor.	
1303 1304 2 Lipinski Lipinski rule of 5 descriptor	
1305 1305 1 LogS Filter-it [™] LogS descriptor	
1306 1306 1 McGowanVolume McGowan volume	
1307135953MoeTypeLabute's Approximate Surface Area desc	riptor
1360 1378 19 MolecularDistanceEdge molecular distance edge descriptor	
1379 1390 12 MolecularId molecular id descriptor	
1391141121PathCountpath count descriptor	
1412 1413 2 Polarizability atomic polarizability descriptor.	
1414 1551 138 RingCount ring count descriptor	
1552 1553 2 RotatableBond rotatable bonds count descriptor	
155415552SLogPWildman-Crippen LogP/MR descriptor	
155615572TopoPSAtopological polar surface area descriptor	
1558 1578 21 TopologicalCharge topological charge descriptor	
1579 1582 4 TopologicalIndex topological diameter, radius, etc	
158315831VdwVolumeABCABC van der waals volume	
1584 1584 1 VertexAdjacencyInformation vertex adjacency information descriptor	
1585 1605 21 WalkCount walk count descriptor	
1606 1607 2 Weight exact molecular weight	
160816092WienerIndexWiener index	
1610 1613 4 ZagrebIndex Zagreb index descriptor	

Table S2.	List of 2D	Mordred	descriptors.

https://mordred-descriptor.github.io/documentation/master/descriptors.html

	Negative coefficient		-	Positive coefficient		
	Descriptor	Coefficient	Category ^a	Descriptor	Coefficient	Category ^a
1	n_GATS6s	-4.01	Ν	p_AATSC0i	3.11	Р
2	n_MATS4s	-2.92	Ν	n_AATSC2d	2.32	Ν
3	n GATS3se	-2.09	Ν	n SaaaC	2.02	Ν
4	p_AATSC8dv	-1.98	Ν	p_MATS2se	1.87	Р
5	PDI	-1.78	Р	-LUMO_n(eV)	1.74	Ν
6	n SdssC	-1.72	Ν	p AATS1v	1.63	Р
7	n GATS5v	-1.68	Ν	Solvent TMB	1.47	Process
8	p_MATS8s	-1.62	Р	p_n9FRing	1.30	Р
9	n_MATS8pe	-1.47	Ν	n_nCl	1.27	Ν
10	p_GATS2dv	-1.44	Р	Eg_p(eV)	1.17	Р
11	$\Delta HOMO(eV)$	-1.33	P/N	p_GATS6p	1.13	Р
12	n_VSA_EState6	-1.20	Ν	n_AATSC4Z	0.99	Ν
13	p_AATSC8s	-1.08	Р	n_TopoPSA	0.91	Ν
14	n_AATSC8m	-0.87	Ν	n_GATS7Z	0.72	Ν
15	n_MATS8s	-0.80	Ν	p_SssS	0.60	Р
16	n_AATS8s	-0.76	Ν	n_nFARing	0.47	Ν
17	n_BCUTd-11	-0.75	Ν	p_EState_VSA8	0.38	Р
18	Additive_Nan	-0.69	Process	n_BCUTpe-1h	0.36	Ν
19	p_MDEC-33	-0.67	Process	Additive_DIO	0.26	Process
20	Solvent_CB	-0.61	Process	p_C1SP2	0.19	Р
21	n_GATS3i	-0.60	Ν	n_NsCl	0.17	Ν
22	n_GATS5i	-0.53	Ν	p_MATS5se	0.11	Р
23	Solvent_TL	-0.50	Process	n_MDEC-23	0.10	Ν
24	Eg_n(eV)	-0.50	Ν	n_MATS3p	0.06	Ν
25	p_n8FARing	-0.47	Р	Solvent_CF	0.02	Process
26	p_AATSC8Z	-0.43	Р	p_n9FHRing	0.00	Р
27	n_GATS3Z	-0.39	Ν			
28	n_BCUTs-11	-0.35	Ν			
29	p_nAHRing	-0.32	Р			
30	n_n9FHRing	-0.28	Ν			

 Table S3. List of LASSO coefficients (Mordred descriptors and material and process parameters as the inputs) sorted in descend order.

Rank	Mordred descriptor	Positive <i>r</i>	Mordred descriptor	Negative <i>r</i>
1	p AMID X	0.881	p MINaasC	-0.849
2	p AATSC0are	0.871	p GATS1dv	-0.730
3	p AATSC0pe	0.868	p ETA dEpsilon C	-0.723
4	p AATSC0s	0.867	p GATS1pe	-0.705
5	p nF	0.863	p SM1 Dzp	-0.699
6	p NsF	0.863	p BCUTp-11	-0.692
7	p_AATS0s	0.856	p ETA psi 1	-0.679
8	p_SlogP_VSA10	0.853	p_GATS1are	-0.676
9	p_SsF	0.843	p_MINaaCH	-0.673
10	p BCUTi–1h	0.837	p GATS2dv	-0.663
11	p_AATSC0se	0.835	p_BCUTv-11	-0.652
12	p_nX	0.812	p_MINsCH3	-0.646
13	p_MID_X	0.812	p_GATS4s	-0.621
14	p_BCUTpe-1h	0.806	p_GATS2pe	-0.616
15	p_AATS0are	0.803	p_SM1_Dzv	-0.613
16	p_BCUTare-1h	0.801	p_MINaaS	-0.612
17	p_PEOE_VSA3	0.796	p_AMID_C	-0.602
18	p_AATSC3se	0.780	p_AXp-0dv	-0.587
19	p_VSA_EState1	0.775	p_GATS2are	-0.587
20	p_AATS0pe	0.775	p_GATS3pe	-0.584
21	p_AATSC3pe	0.773	p_GATS1s	-0.572
22	p_Mare	0.770	p_MAXaasC	-0.552
23	p_AATS3s	0.761	p_GATS4dv	-0.550
24	p_BCUTse-1h	0.759	p_GATS2s	-0.544
25	p_AETA_beta_ns_d	0.759	p_MAXaaS	-0.543
26	p_BCUTdv-1h	0.758	p_GATS3se	-0.542
27	p_AATSC2s	0.751	p_MINssCH2	-0.534
28	p_AATS5s	0.749	p_GATS1se	-0.518
29	p_AATSC0dv	0.747	p_MATS6i	-0.514
30	p AATS0se	0.743	p_VSA_EState5	-0.513

Table S4. Multi–colinearity of AATSC0i (polymer, p). The descriptors and their correlation coefficients (r) in top 30th are sorted in decent order for the positive and negative category.

Rank	Mordred descriptor	Positive r	Mordred descriptor	Negative r
1	n_GATS6are	0.960	n_MATS6s	-0.872
2	n GATS6se	0.953	n ATSC6s	-0.840
3	n GATS6pe	0.953	n AATSC6s	-0.836
4	n_GATS5s	0.895	n_MATS6se	-0.822
5	n_GATS7s	0.877	n_MATS6are	-0.819
6	n_GATS8s	0.870	n_AATSC6se	-0.818
7	n_GATS5are	0.854	n_ATSC6se	-0.813
8	n_GATS6dv	0.844	n_MATS6pe	-0.803
9	n_GATS5pe	0.838	n_AATSC6are	-0.802
10	n_GATS5se	0.831	n_ATSC6are	-0.785
11	n_GATS7pe	0.828	n_AATSC6pe	-0.783
12	n_GATS4s	0.826	n_NtN	-0.753
13	n_GATS7are	0.823	n_C1SP1	-0.753
14	n_GATS8are	0.818	n_SMR_VSA2	-0.753
15	n_GATS4are	0.817	n_StN	-0.751
16	n_GATS4se	0.815	n_EState_VSA10	-0.744
17	n_GATS8pe	0.814	n_ATSC6pe	-0.733
18	n_GATS5dv	0.812	n_nBondsT	-0.728
19	n_GATS8se	0.803	n_PEOE_VSA10	-0.722
20	n_GATS4pe	0.803	n_ATSC7se	-0.720
21	n_GATS7se	0.798	n_PEOE_VSA4	-0.712
22	n_BCUTd-11	0.752	n_AATSC5s	-0.698
23	n_C1SP2	0.716	n_MATS5s	-0.692
24	n_AMID_O	0.714	n_n9FRing	-0.691
25	n_MATS2are	0.708	n_ATSC7s	-0.681
26	n_PEOE_VSA13	0.700	n_ATSC5s	-0.679
27	n_GATS7dv	0.697	n_AATSC7se	-0.669
28	n_MATS2pe	0.669	n_NtsC	-0.668
29	n_GATS8dv	0.665	n_ATSC8se	-0.665
30	n GATS3i	0.659	n MATS3s	-0.665

Table S5. Multi-colinearity of GATS6s (NFA, n). The descriptors and their correlation coefficients (r) in top 30th are sorted in decent order for the positive and negative category.

	Negati	ve coefficient		Positive coefficient		
	Descriptor	Coefficient	Category ^a	Descriptor	Coefficient	Category ^a
1	n_GATS6s	-4.54	Ν	p_AATSC0i	2.83	Р
2	Homogeneity_2_0	-3.15	GLCM	n_AATSC2d	2.60	Ν
3	n_MATS4s	-3.06	Ν	n_SaaaC	1.97	Ν
4	n_GATS3se	-2.53	Ν	p_MATS2se	1.45	Р
5	p_AATSC8dv	-2.37	Р	Solvent_TMB	1.40	Process
6	Maximum Height	-2.13	HA	p_n9FRing	1.26	Р
7	n_GATS5v	-1.75	Ν	p_AATS2v	1.15	Р
8	PDI	-1.75	Р	Eg_p(eV)	1.12	Р
9	p_MATS8s	-1.69	Р	n_nCl	1.04	Ν
10	n_SdssC	-1.65	Ν	-LUMO_n(eV)	0.89	Ν
11	n_VSA_EState6	-1.36	Ν	n_MDEC-23	0.77	Ν
12	Eg_n(eV)	-1.29	Ν	n_GATS7Z	0.72	Ν
13	Correlation_4_0	-1.20	GLCM	p_C1SP2	0.60	Р
14	n_MATS8s	-0.97	Ν	p_GATS6p	0.57	Р
15	n_MATS8pe	-0.95	Ν	p_SssS	0.51	Р
16	p_GATS2dv	-0.94	Р	p_EState_VSA8	0.44	Р
17	$\Delta HOMO(eV)$	-0.92	P/N	n_AATSC4Z	0.37	Ν
18	n_BCUTd-11	-0.86	Ν	p_AATS1v	0.37	Р
19	n_AATSC8m	-0.81	Ν	p_SlogP_VSA10	0.33	Р
20	p_GATS3dv	-0.78	Р	n_nFARing	0.33	Ν
21	Additive_Nan	-0.66	Process	n_AATSC4m	0.31	Ν
22	p_AATSC8Z	-0.56	Р	Additive_DIO	0.23	Process
23	p_MDEC-33	-0.54	Р	n_TopoPSA	0.13	Ν
24	Solvent_CB	-0.47	Process	n_BCUTse-1h	0.11	Ν
25	n_AATS8s	-0.46	Ν	n_NsCl	0.07	Ν
26	p_GATS1i	-0.44	Р	Solvent_DCB	0.05	Process
27	p_n8FARing	-0.37	Р	p_NaaN	0.04	Р
28	n_nBridgehead	-0.35	Ν	Additive_CN	0.01	Process
29	p_n10FHRing	-0.33	Р	p_n9FHRing	0.00	Р
30	n BCUTs–11	-0.31	Ν			

Table S6. List of LASSO coefficients (Mordred descriptors, material and process parameters, GLCM, and HA as the inputs) sorted in descend order. GLSM and HA parameters are highlighted by bold.

	Negative coefficient			Positive coefficient		
	Descriptor	Coefficient	Category ^a	Descriptor	Coefficient	Category ^a
1	n GATS6s	-4.259	N	p AATSC0i	2.780	P
2	Maximum Height	-3.218	HA	65.22	2.727	FFT
3	n MATS4s	-3.089	Ν	n AATSC2d	2.511	Ν
4	n_GATS3se	-2.567	Ν	n_SaaaC	1.916	Ν
5	PDI	-2.295	Р	40.54	1.880	FFT
6	p_AATSC8dv	-2.191	Р	p_MATS2se	1.717	Р
7	p_MATS8s	-1.990	Р	Solvent_TMB	1.413	Process
8	n_SdssC	-1.984	Ν	p_n9FRing	1.254	Р
9	n_GATS5v	-1.879	Ν	p_AATS1v	1.233	Р
10	n_VSA_EState6	-1.566	Ν	-LUMO_n(eV)	1.208	Ν
11	n MATS8pe	-1.553	Ν	Eg p(eV)	1.196	Р
12	$\Delta HOMO(eV)$	-1.179	P/N	n_nCl	1.163	Ν
13	p_GATS2dv	-1.058	Р	n_MDEC-23	0.943	Ν
14	Eg_n(eV)	-1.031	Ν	n_GATS7Z	0.832	Ν
15	n_MATS8s	-0.935	Ν	p_GATS6p	0.796	Р
16	n_BCUTd-11	-0.916	Ν	n_TopoPSA	0.661	Ν
17	p_MDEC-33	-0.798	Р	p_EState_VSA8	0.626	Р
18	p_GATS3dv	-0.770	Р	n_AATSC4m	0.595	Ν
19	n_AATSC8m	-0.701	Ν	p_C1SP2	0.559	Р
20	Additive_Nan	-0.619	Process	p_SssS	0.517	Р
21	Solvent_CB	-0.490	Process	p_SlogP_VSA10	0.477	Р
22	p_AATSC8Z	-0.487	Р	n_nFARing	0.455	Ν
23	n_AATS8s	-0.446	Ν	34.88	0.451	FFT
24	n_BCUTs-11	-0.446	Ν	51.72	0.319	FFT
25	p_NdssC	-0.433	Р	p_AATS2v	0.299	Р
26	p_MATS6p	-0.417	Р	Additive_DIO	0.277	Process
27	n_GATS3Z	-0.407	Ν	Solvent_DCB	0.114	Process
28	p_AATSC8s	-0.380	Р	n_BCUTse-1h	0.088	Ν
29	n/(p+n)	-0.374	Process	n_NsCl	0.075	Ν
30	p n10FHRing	-0.361	Р	p n9FHRing	0.000	Р

Table S7. List of LASSO coefficients (Mordred descriptors, material and process parameters, FFT, and HA as the inputs) sorted in descend order. FFT and HA parameters are highlighted by bold.

^a Parameter category: P = polymer, N = NFA, P/N = difference of P and N. Descriptors with FFT category represents the spatial wavelength.

	Negative coefficient		Positive coefficient			
	Descriptor	Coefficient	Category ^a	Descriptor	Coefficient	Category ^a
1	Maximum	-0.746	ША	Solvent_TMB	0.840	Drocoss
	Height		ПА			FIDCESS
2	n_MATS4s	-0.724	Ν	n_MDEC-23	0.658	Ν
3	p_MDEC-33	-0.646	Р	-LUMO_n(eV)	0.593	Ν
4	n_AATSC4s	-0.606	Ν	Eg_p(eV)	0.531	Р
5	Eg_n(eV)	-0.583	Ν	Δ LUMO(eV)	0.529	P/N
6	$\Delta HOMO(eV)$	-0.566	P/N	p_C1SP2	0.479	Р
7	Mean	-0.565	HA	n_NsCl	0.431	Ν
8	Skewness	-0.551	HA	n_nCl	0.431	Ν
9	Additive_Nan	-0.548	Process	n_EState_VSA9	0.418	Ν
10	n/(p+n)	-0.534	P/N	p_MATS2se	0.411	Р
11	n_GATS6s	-0.523	Ν	Additive_DIO	0.406	Process
12	PDI	-0.523	Р	n_SsCl	0.404	Ν
13	p_AATSC8dv	-0.520	Р	p_SssS	0.399	Р
14	n_MATS8s	-0.517	Ν	-HOMO_p(eV)	0.393	Р
15	Solvent_CB	-0.504	Process	n_PEOE_VSA4	0.372	Ν
16	n_SdssC	-0.477	Ν	n_MATS3p	0.370	Ν
17	p_MATS8s	-0.461	Р	n_GATS7Z	0.367	Ν
18	n_ETA_dPsi_B	-0.443	Ν	p_GATS6p	0.355	Р
19	n_BCUTd-11	-0.441	Ν	Additive_CBA	0.354	Process
20	Variance	-0.435	HA	p_AATSC0i	0.352	Р
21	p_EState_VSA7	-0.433	Р	n_GATS7m	0.352	Ν
22	p_AATSC8s	-0.413	Р	p_n9FAHRing	0.351	Р
23	n_SsBr	-0.400	Ν	p_n9FARing	0.351	Р
24	n_NsBr	-0.399	Ν	n_MATS6s	0.349	Ν
25	n_nBr	-0.399	Ν	n_BCUTdv-1h	0.343	Ν
26	n_JGI4	-0.393	Ν	n_NdsssP	0.334	Ν
27	p_n10FHRing	-0.386	Р	n_nP	0.334	Ν
28	p_n10FaHRing	-0.386	Р	p_SlogP_VSA10	0.328	Р
29	n_EState_VSA6	-0.380	Ν	Solvent_THF	0.325	Process
30	p_MATS8dv	-0.376	Р	65.22	0.319	FFT

Table S8. List of Ridge regression coefficients (Mordred descriptors, material and process parameters, FFT, and HA as the inputs) sorted in descend order. FFT and HA parameters are highlighted by bold.

^a Parameter category: P = polymer, N = NFA, P/N = difference of P and N. Descriptors with FFT category represents the spatial wavelength.

	Descriptor	Coefficient	Category ^a
1	n_StN	0.11425	Ν
2	n_VSA_EState3	0.05838	Ν
3	n_GATS5pe	0.02768	Ν
4	n_AATSC3m	0.01495	Ν
5	p_AATSC8se	0.01317	Р
6	p_ETA_shape_y	0.01315	Р
7	$\Delta HOMO(eV)$	0.01288	P/N
8	n_GATS4se	0.01161	Ν
9	Eg_n(eV)	0.01126	Ν
10	-HOMO_p(eV)	0.01070	Р
11	p_ATSC8s	0.01053	Р
12	n_GATS3i	0.01015	Ν
13	n_AATSC3p	0.00932	Ν
14	n_BCUTs-11	0.00896	Ν
15	p_MATS5dv	0.00850	Р
16	n_AATSC3v	0.00761	Ν
17	$\Delta LUMO(eV)$	0.00728	P/N
18	-HOMO_n(eV)	0.00719	Ν
19	p_AATSC5dv	0.00708	Р
20	-LUMO_n(eV)	0.00603	Ν
21	p_GATS1i	0.00583	Р
22	n_GATS6pe	0.00571	Ν
23	p_ETA_dEpsilon_B	0.00551	Р
24	n_GATS6i	0.00515	Ν
25	n_GATS5are	0.00500	Ν
26	n_AATSC3Z	0.00482	Ν
27	Mn (kg/mol)	0.00461	Р
28	p_AATSC8dv	0.00460	Р
29	n_MATS5are	0.00453	Ν
30	p_AATSC4dv	0.00452	Р

Table S9. List of random forest feature importance (Mordred descriptors, material and process parameters as the inputs) sorted in descend order.

	Descriptor	Coefficient	Category ^a
1	n_StN	0.14443	Ν
2	n VSA EState3	0.05358	Ν
3	n_GATS5pe	0.02300	Ν
4	n AATSC3m	0.01880	Ν
5	p_AATSC8se	0.01538	Р
6	p ETA shape y	0.01372	Р
7	n_GATS4se	0.01284	Ν
8	p ATSC8s	0.00959	Р
9	n BCUTs-11	0.00946	Ν
10	Eg n(eV)	0.00934	Ν
11	$\Delta HOMO(eV)$	0.00928	P/N
12	-HOMO_p(eV)	0.00909	Р
13	n_GATS3i	0.00879	Ν
14	n AATSC3v	0.00828	Ν
15	n_AATSC3p	0.00819	Ν
16	p_MATS5dv	0.00695	Р
17	-HOMO_n(eV)	0.00670	Ν
18	p_AATSC5dv	0.00629	Р
19	$\Delta LUMO(eV)$	0.00614	P/N
20	n GATS6pe	0.00597	Ν
21	n_GATS6i	0.00570	Ν
22	Correlation_2_0	0.00564	GLCM
23	p_ETA_dEpsilon_B	0.00556	Р
24	p_GATS1i	0.00506	Р
25	p_AATSC8dv	0.00487	Р
26	n_GATS5are	0.00481	Ν
27	–LUMO_n(eV)	0.00479	Ν
28	p_AETA_beta	0.00472	Р
29	n_AATSC3Z	0.00470	Ν
30	n_GATS4s	0.00452	Ν

Table S10. List of random forest feature importance (Mordred descriptors, material and process parameters, GLCM, and HA as the inputs) sorted in descend order. GLSM and HA parameters are highlighted by bold.

	Descriptor	Coefficient	Category ^a
1	n StN	0.06983	N
2	n VSA EState3	0.04794	Ν
3	n GATS5pe	0.02383	Ν
4	n ATSC6s	0.01130	Ν
5	p_ETA_shape_y	0.01107	Р
6	n_GATS4s	0.01049	Ν
7	n_GATS5are	0.01011	Ν
8	p_AATSC8se	0.00960	Р
9	n_AATSC3m	0.00857	Ν
10	n_ATSC1s	0.00854	Ν
11	p_AATSC5dv	0.00834	Р
12	n_BCUTs-11	0.00820	Ν
13	p_ATSC8s	0.00813	Р
14	p_MATS5dv	0.00773	Р
15	n_GATS4se	0.00735	Ν
16	n_GATS3i	0.00730	Ν
17	$\Delta HOMO(eV)$	0.00711	P/N
18	Eg_n(eV)	0.00707	Ν
19	n_GATS3s	0.00694	Ν
20	n_AATSC3p	0.00653	Ν
21	p_AATSC8dv	0.00636	Р
22	n_GATS5s	0.00610	Ν
23	n_AATSC3Z	0.00601	Ν
24	p_ETA_dEpsilon_B	0.00598	Р
25	n_AATSC3v	0.00528	Ν
26	-HOMO_p(eV)	0.00520	Р
27	n_AATSC6s	0.00512	Ν
28	n_MATS5are	0.00502	Ν
29	n_AATSC1s	0.00478	Ν
30	n_BCUTd-11	0.00475	Ν

Table S11. List of random forest feature importance (Mordred descriptors, material and process parameters, FFT, and HA as the inputs) sorted in descend order. FFT and HA parameters are highlighted by bold.

^a Parameter category: P = polymer, N = NFA, P/N = difference of P and N. Descriptors with FFT category represents the spatial wavelength.

Supplementary Figures

Figure S1. Histogram of AFM topological images collected from literatures (the total number is 1062). (a) The spatial size of image and (b) height scale of image.

Figure S2. Schematic of histogram analysis (HA). Equations for HA (variance, energy, contrast, entropy, skewness, and kurtosis) are shown. The maximum and mean levels are also considered in ML modeling.

Figure S3. Results of RF regression. (a)(b) The explanatory variables are chemical structures (Mordred descriptors), material properties (bandgap, etc), and process parameters (solvent, etc). (c)(d) The aforementioned parameters plus GLCM and HA data. (e)(f) The aforementioned parameters plus FFT and HA data. The upper panels (a, c, e) are the regression plots of experimental (horizontal) and predicted (vertical) PCE. The white blue (n = 623) and dark (n = 267) circles are train and test data, respectively. The correlation coefficient (r) values of the train and test data are appended. The lower panels (b, d, f) are the feature importance in decent order. The green, red, orange, and blue bars correspond to the material properties and process parameters, GLCM parameters, HA parameters, and FFT parameters, respectively. A complete list of ranking is provided in **Tables S9–S11**.

Figure S4. IFPS of gray-scale images generated by applying noise (green), that processed with BPF-1 (25–100 nm, red), and that processed with BPF-2 (> 150 nm, blue).

Figure S5. Correlation coefficients of (a) LASSO, (b) Ridge, and (c) RF model constructed solely using AFM data (HA, GLCM, FFT, and their combination) as the explanatory variables. Chemical structures (Mordred descriptors), material properties, and process parameters were not used. The objective variable is PCE. The dark and white blue bars are test and train data, respectively.