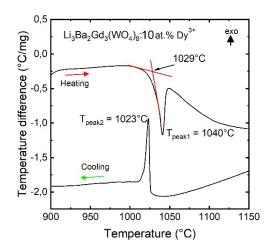
Supporting Information for


Structure and luminescence properties of Dy³⁺ doped quaternary tungstate Li₃Ba₂Gd₃(WO₄)₈ for applications in wLEDs

Abir Douzi^{a,b}, Sami Slimi^a, Eduard Madirov^c, Andrey Turshatov^c, Bryce S. Richards^c, Rosa Maria Solé^a, Magdalena Aguiló^a, Francesc Díaz^a, Ezzedine Ben Salem^b, Xavier Mateos^{a,d,*}

^aUniversitat Rovira i Virgili (URV), Física i Cristal-lografia de Materials (FiCMA), Marcel·li Domingo 1, 43007, Tarragona, Spain.
^bI.P.E.I. of Monastir, Unit of Materials and Organic Synthesis, University of Monastir 5019, UR17ES31, Tunisia
^cInstitute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany .
^d Serra Húnter Fellow.

*Corresponding author, e-mail: <u>xavier.mateos@urv.cat</u>

1-DTA analysis:

2-RAMAN and FTIR spectroscopy:

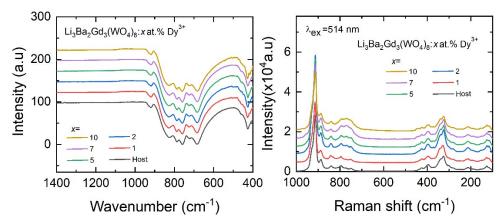


Fig.S2. (a) FTIR spectra (b) Raman spectra of $Li_3Ba_2Gd_3(WO_4)_8$ doped at different concentration levels of Dy^{3+} ions

3- Bandgap and electronic structure:

The Kubelka-Munk (K-M) relation is employed to evaluate the optical band gap values of the fabricated powder ³⁹:

$$F(R_{\infty}) = \frac{(1 - R_{\infty})^2}{2R_{\infty}} = K/S$$
, (Eq.S1)

where $R_{\infty} = R_{sample}/R_{standard}$; K is the absorption coefficient and and S is the scattering coefficient. On the other hand, the band gap E_g of the material and the linear absorption coefficient α of the material are correlated by the Tauc equation:

$$\alpha h \nu = C1 \times (h \nu - E_g)^{1/2}, \qquad (Eq.S2)$$

whereby, $h\nu$ is the energy of the photon and C1 represents the proportionality constant. In the case where, the photons scatter from the surface of the material in a perfectly diffuse manner, then the value of the absorption coefficient K becomes almost equal to 2α . Assuming that S is constant with respect to the wavelength λ , the relationship between $F(^{R_{\infty}})$ and E_g can be obtained using equations (2) and (3), as follows:

$$\left[F(R_{\infty})h\nu\right]^{2} = C2 \times (h\nu - E_{g}), \qquad (Eq.S3)$$

3- Calculation of the chromaticity coordinates:

In the case of the CIE 1931-XYZ tri-chromatic system, the tri-stimulus values are defined as follow:

$$X = \int \bar{x}(\lambda)I(\lambda)d\lambda, \qquad (Eq.S4)$$

$$Y = \int \bar{y}(\lambda)I(\lambda)d\lambda , \qquad (Eq.S5)$$

$$Z = \int \bar{z}(\lambda) I(\lambda) d\lambda, \qquad (Eq.S6)$$

where $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ are the observer's colour functions defined by the CIEI(λ) and $\bar{I}(\lambda)$ is the spectral intensity of the material. The chromaticity coordinates are determined as follows:

$$x = \frac{X}{X + Y + Z},$$
 (Eq.S7)

$$y = \frac{1}{X + Y + Z},$$
 (Eq.S8)

$$z = \frac{1}{X + Y + Z}, \qquad (Eq.S9)$$

where x + y + z = 1, so it is sufficient to define chromaticity with two numbers, usually x and y.