Supplementary Materials

Engineered rare-earth nanomaterials for fluorescence imaging and

therapy

Hongru Wang ^{1,2}, Zheng Wei ³, Yangyang Zhao ⁵, Shidong Wang ^{4,*}, Lili Cao ^{2,*}, Fan Wang ³, Kai Liu ^{3,5} and Yanfei Sun ^{3,*}

¹Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China

²Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China

³State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

⁴Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China

⁵Department of Chemistry, Tsinghua University, Beijing 100084, China

*Correspondence: stonewang@bjmu.edu.cn; qilucll@163.com; Sunyf90@163.com

Fig. S1. The Fourier Transform Infrared (FTIR) spectroscopy of pristine UCNP (no oleate ligands capped, black) and UCNPs@Au (red) nanoparticles. The successful coating of PEI on UCNP is confirmed by the FTIR spectrum with a peak at 1502 cm⁻¹.

Fig. S2. Ultraviolet–Visible (UV-Vis) spectra of UCNP@PEI and UCNP@Au aqueous solution. The UV-Vis spectra of UCNP@Au nanoparticles showed a strong absorption at 540 nm, resulting from the plasma resonance absorption peak of isotropous Au nanoparticles.

Fig. S3. The photo-thermal conversion efficiency (η) of UCNPs@Au. η was calculated as follows [1]: η=hS(T_{max,NPs}-T_{max,solvent})/I(1-10^{-A980}); t=-τ_s Lnθ; θ=(T-T_{surr})/(T_{max,NPs}-T_{surr}); hS=m_dC_d/τ_s. m_d=1 g, C_d=4.2 J·g⁻¹ T_{max,NPs}=49.4 °C, T_{max,solvent}=30.8 °C, T_{surr}= 25 °C , A₉₈₀=0.625, I=4.458 W·cm⁻².

Fig. S4. Cell counting kit-8 (CCK8) assay for the cytotoxicity of UCNPs@Au nanoparticles in mouse embryonic fibroblast cell lines (NIH-3T3) cells.

Fig. S5. CCK-8 assay to measure the anti-tumour effect of UCNPs@Au nanoparticles in mouse glioma 261 (GL261) cells. Different concentrations of UCNPs@Au nanoparticles were used under the 980 nm laser.

Fig. S6. The FTIR spectrum of the UCNPs@mSiO₂@TA–AI nanoparticle. The formation of the Si–O–Si framework is evidenced by the band located at 1080 cm⁻¹. The band located at 1650 cm⁻¹, which corresponds to the bending vibration –NH– group indicates the presence of amino groups in

Fig. S7. Nitrogen adsorption-desorption isotherms for UCNPs@mSiO₂.

Fig. S8. Pore size analysis for UCNPs@mSiO₂.

Fig. S9. Powder X-ray Diffraction (XRD) spectra of the UCNPs@mSiO₂@TA–Al nanoparticle. Standard card of β -NaYF₄ (JCPDS no. 16-0334) and Al (JCPDS 04-0787) were presented.

Fig. S10. Upconversion fluorescence emission spectra of UCNPs@mSiO₂ (black) and UCNPs@mSiO₂@TA–AI nanoparticle (red). They were excited with a 980 nm NIR laser.

Fig. S11. CCK-8 assay to examine the cytotoxicity of UCNPs@mSiO₂@TA-AI in NIH-3T3 cells.

Fig. S12. GL261 cells were inhibited within 24 h by the UCNPs@mSiO₂-Dox@TA-AI (100 µg/mL) nanoparticles in calcein-acetoxymethyl (AM)/propidium iodide (PI) co-staining. References:

 Liu, B.; Sun, J.; Zhu, J.; Li, B.; Ma, C.; Gu, X.; Liu, K.; Zhang, H.; Wang, F.; Su, J.; et al. Injectable and NIR-Responsive DNA-Inorganic Hybrid Hydrogels with Outstanding Photothermal Therapy. *Adv Mater* 2020, 32, e2004460, doi:10.1002/adma.202004460.