Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

POCl₃ mediated One-pot deoxygenative aromatization and electrophilic chlorination of Dihydroxy-2-methyl-4-oxo-indeno[1,2-*b*]pyrroles

Forough Nasuhipur^a, Zarrin Ghasemi^a*, Poupon Morgane^b, and Michal Dušek^b

^a Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166614766, Iran

 $_{\rm b}$ Institute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic

Email: z.ghasemi@tabrizu.ac.ir

Contents:

1. General Information and Methods	2
2. General experimental procedure	2
2.1. General Experimental Procedure for the synthesis of compounds 2a-c	2
2.2. General Experimental Procedure for the synthesis of compounds 3a , 3b , and 3d-h	2
3. Characterization of compounds	3
4. IR, ¹ H NMR and ¹³ C NMR Spectra	9
5. Nal in acetone test	73
6. Crystallographic Data of 3f	74
7. References	75

1. General Information and Methods

All commercially available solvents and reagents were purchased from Merck, Fluka and Aldrich chemical companies. Solvents were dried by the general methods and degassed before use. Electrothermal MEL-TEMP apparatus (model 1202D) was applied to measure melting points without correction. FT-IR spectra (in KBr) were obtained using a Bruker Tensor 27 spectrometer. ¹H NMR and ¹³C NMR spectra were recorded by a Bruker Spectrospin Avance 400 spectrometer (400 MHz and 100 MHz), and chemical shifts were reported relative to the solvent. Silica-precoated TLC plates (Merck Kieselgel 60 PF254 + 366) were utilized for Thin-layer chromatography (TLC). Elemental analyses were measured by the Vario ELIII apparatus (Elementar Co.). Preparative thin layer chromatographies (TLC) were performed with prepared glass-backed plates (20×20 cm², 500μ) using silica gel (Merck Kieselgel 60 PF254 + 366). X-ray diffraction measurements were performed at 95 K using a four-circle diffractometer, SuperNova of Rigaku Oxford Diffraction, with a micro-focus sealed tube, mirror-collimated Cu K α radiation (λ = 1.54184 Å), and a CCD detector, Atlas S2. The single crystal was twinned by a rotation of 2.2° around [0.11 0.6 0.79] which corresponds to a randomly orientated second domain. The data reduction and absorption correction were carried out with CrysAlisPro software¹. The structure was solved with the deconvoluted data set of the main domain (63%) using a dual-space algorithm in SHELXT software² and refined by full-matrix least squares on F2 value using Jana2020 (not yet published successor of Jana2006³) and the same data set. Non-hydrogen atoms were refined with harmonic atomic displacement parameters (displacement ellipsoids), and the hydrogen atoms on carbon atoms were placed at calculated positions derived from the parent atoms with Uiso (H) equal to 1.2 times Ueq of C. The structure was deposited on the CCDC database under the number 2227028.

2. General experimental procedure

2.1. General Experimental Procedure for the synthesis of compounds 2a-c

A mixture of substrates **1a-c** (1.0 mmol) and $POCl_3$ (1.3 mmol, 0.12 cc) in DMF (2 mL) was heated at 60 °C for 3-7 h (TLC monitoring). After completion of the reaction, the precipitates were filtered and washed with *n*-hexane (10 mL) and then with diethyl ether (10 mL) to afford pure products **2a-c.**

2.2. General Experimental Procedure for the synthesis of compounds 3a, 3b, and 3d-h

A mixture of substrates **1a**, **1b**, **1d** and **1f-i** (1.0 mmol) and POCl₃ (1.3 mmol, 0.12 cc) in DMF (2 mL) was heated at 60 °C for 0.25-7 h (TLC monitoring). After completion of the reaction, water (50 mL) was added, and the mixture was stirred at 60 °C for 24 h. Finally, the precipitate was filtered and purified by preparative thin-layer chromatography to get **3a**, **3b**, and **3d-h**.

3

3. Characterization of compounds

Methyl 2-(chloromethyl)-4-oxo-1-phenyl-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2a).

Orange solid (0.26 g, 74%); mp 224 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 3055, 2918, 2848, 1704, 1603, 1447. ¹H NMR (CDCl₃, 400 MHz): δ 7.66-7.61 (m, 3H, Ph), 7.60-7.56 (m, 2H, Ph), 7.44 (d, *J* = 6.9 Hz, 1H, Ph), 7.12-7.08 (m, 1H, Ph), 7.05-7.01 (m, 1H, Ph), 6.17 (d, *J* = 7.1 Hz, 1H, Ph), 4.77 (s, 2H, CH₂), 3.96 (s, 3H, Me). ¹³C NMR (CDCl₃, 100 MHz): δ 183.1, 162.7, 151.4, 139.2, 137.7, 134.0, 133.1, 131.5, 129.4, 129.0, 127.9, 126.4, 122.9, 120.2, 116.5, 110.8, 50.9, 33.9. ¹³C/DEPT-135 (CDCl₃, 100 MHz): δ 131.5, 129.4, 129.0, 127.9, 126.4, 122.9, 116.6, 50.9, 34.0 (negative peak). Anal. Calcd for C₂₀H₁₄ClNO₃: C, 68.29; H, 4.01; N, 3.98. Found: C, 68.33; H, 4.06; N, 3.92.

Ethyl 2-(chloromethyl)-1-(4-chlorophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2b)

Orange solid (0.27 g, 67%); mp 210 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 3064, 2954, 2920, 2854, 1703, 1607, 1452. ¹H NMR (CDCl₃, 400 MHz): δ 7.62 (d, *J* = 8.6 Hz, 2H, Ph), 7.53 (d, *J* = 8.6 Hz, 2H, Ph), 7.45 (d, *J* = 6.8 Hz, 1H, Ph), 7.14-7.05 (m, 2H, Ph), 6.22 (d, *J* = 7.0 Hz, 1H, Ph), 4.77 (s, 2H, CH₂-Cl), 4.40 (q, *J* = 7.1 Hz, 2H, CH₂-OCO), 1.46 (t, *J* = 7.1 Hz, 3H, Me). ¹³C NMR (CDCl₃, 100 MHz): δ 182.9, 162.0, 151.3, 138.8, 137.7, 135.6, 132.9, 132.5, 131.6, 129.3, 128.0, 127.8, 123.0, 120.6, 116.4, 111.8, 59.9, 33.9, 13.2. Anal. Calcd for C₂₁H₁₅Cl₂NO₃: C, 63.02; H, 3.78; N, 3.50. Found: C, 63.06; H, 3.72; N, 3.55.

Methyl 2-(chloromethyl)-1-(4-nitrophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2c).

Orange solid (0.21 g, 53%); mp 260 °C (decomp.). **FT-IR (KBr, ν, cm⁻¹)**: 3068, 2924, 2854, 1708, 1523, 1606, 1446, 1350. ¹H NMR (DMSO-d₆, 400 MHz): δ 8.53 (d, *J* = 8.8 Hz, 2H, Ph), 7.83 (d, *J* = 8.8 Hz, 2H, Ph), 7.49 (d, *J*= 7.0 Hz, 1H, Ph), 7.18-7.14 (m, 1H, Ph), 7.11-7.07 (m, 1H, Ph), 6.22 (d, *J*= 7.1 Hz, 1H, Ph), 4.81 (s, 2H, CH₂-Cl), 3.97 (s, 3H, Me). ¹³C NMR (DMSO-d₆, 100 MHz): δ 148.5, 140.1, 139.8, 137.8, 133.4, 129.3, 129.2, 125.4, 123.6, 118.0, 51.8, 35.1. Anal. Calcd for C₂₀H₁₃ClN₂O₅: C, 60.54; H, 3.30; N, 7.06. Found: C, 60.61; H, 3.38; N, 7.11.

tert-Butyl 1-butyl-2-(chloromethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2d)

A mixture of substrate **1d** (1.0 mmol, 0.37 g) and POCl₃ (1.3 mmol, 0.12 cc) in DMF (2 mL) was heated at 60 °C for 0.25 h. Water (50 mL) was then added to the reaction solution. Finally, the obtained precipitate was quickly filtered and purified by preparative thin-layer chromatography (*n*-hexane/ethyl acetate = 5:1) to give product **2d**. Orange solid (0.24 g, 68%); mp 202 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 3067, 2926, 2861, 1705, 1609, 1452. ¹H NMR (CDCl₃, 400 MHz):

δ 7.41 (d, *J* = 7.1 Hz, 1H, Ph), 7.24-7.22 (m, 1H, Ph), 7.14-7.10 (m, 1H, Ph), 6.94 (d, *J* = 7.2 Hz, 1H, Ph), 4.93 (s, 2H, CH₂-Cl), 4.04 (t, *J* = 7.7 Hz, 2H, CH₂-N), 1.80-1.72 (m, 2H, CH₂-CH₂-CH₂), 1.61 (s, 9H, C(CH₃)₃), 1.45-1.35 (m, 2H, CH₂-CH₃), 0.92 (t, *J* = 7.3 Hz, 3H, CH₃-CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 183.2, 162.0, 150.2, 138.5, 138.4, 133.6, 131.4, 127.4, 122.6, 120.2, 116.2, 112.9, 80.1, 59.7, 45.0, 32.2, 27.5, 27.3, 19.0, 18.9, 12.7. Anal. Calcd for C₂₁H₂₄ClNO₃: C, 67.46; H, 6.47; N, 3.75. Found: C, 67.42; H, 6.51; N, 3.78.

3-Acetyl-2-(chloromethyl)-1-(3-morpholinopropyl)indeno[1,2-b]pyrrol-4-one (2e)

A mixture of substrate **1e** (1.0 mmol, 0.39 g) and POCl₃ (1.3 mmol, 0.12 cc) in DMF (2 mL) was heated at 60 °C for 1.5 h. Water (20 mL) was then added and extracted with chloroform (3 · 20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under vacuum to afford product **2e** as orange solid (0.25 g, 65%); mp 120 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 2923, 2856, 1702, 1656, 1609, 1456, 1105. ¹H NMR (CDCl₃, 400 MHz): δ 7.43 (d, *J* = 6.9 Hz, 1H, Ph), 7.28-7.25 (m, 1H, Ph), 7.17- 7.13 (m, 2H, Ph), 4.65 (s, 2H, CH₂-Cl), 4.23 (t, *J* = 6.8 Hz, 2H, CH₂), 3.69 (t, *J* = 4.1 Hz, 4H, CH₂), 2.76 (s, 3H, Me), 2.40- 2.37 (m, 6H, CH₂), 2.00 (quin, *J* = 6.4 Hz, 2H,

CH₂). ¹³C NMR (CDCl₃, 100 MHz): δ 196.7, 184.3, 149.8, 143.7, 137.2, 133.6, 131.7, 127.6, 123.0, 119.7, 118.9, 116.5, 65.8, 53.8, 53.3, 52.6, 42.7, 30.3, 26.4. Anal. Calcd for C₂₁H₂₃ClN₂O₃: C, 65.20; H, 5.99; N, 7.24. Found: C, 65.24; H, 5.94; N, 7.30.

Methyl 2-(hydroxymethyl)-4-oxo-1-phenyl-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3a).

Purified by preparative thin-layer chromatography (*n*-hexane/acetone = 4:1). Orange solid (0.27 g, 81%); mp 264 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 3514, 3062, 3010, 2946, 1706, 1605, 1447. ¹H NMR (CDCl₃, 400 MHz): δ 7.62-7.58 (m, 3H, Ph), 7.54-7.48 (m, 2H, Ph), 7.40 (d, *J* = 6.7 Hz, 1H, Ph), 7.08-7.00 (m, 2H, Ph), 6.25 (d, *J* = 7.1 Hz, 1H, Ph), 4.49 (d, *J* = 6.4 Hz, 2H, CH₂-O), 3.96 (s, 3H, Me), 3.86 (t, *J* = 7 Hz, 1H, exchangeable with D₂O, OH). ¹³C NMR (CDCl₃, 100 MHz): δ 183.4, 164.6,

150.3, 145.0, 137.6, 134.3, 133.4, 131.3, 129.0, 128.9, 127.5, 126.2, 122.7, 120.0, 116.3, 110.1, 53.7, 51.2. Anal. Calcd for C₂₀H₁₅NO₄: C, 72.06; H, 4.54; N, 4.20. Found: C, 72.09; H, 4.51; N, 4.24.

Ethyl 1-(4-chlorophenyl)-2-(hydroxymethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3b).

Purified by preparative thin-layer chromatography (*n*-hexane/ethyl acetate = 2:1). Pale orange solid (0.31 g, 81%); mp 206-208 °C. **FT-IR (KBr, v, cm⁻¹)**: 3436, 2924, 2855, 1707, 1671, 1635, 1455. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 (d, *J* = 8.6 Hz, 2H, Ph), 7.47-7.42 (m, 3H, Ph), 7.12- 7.05 (m, 2H, Ph), 6.31 (d, *J* = 6.4 Hz, 1H, Ph), 4.49 (d, *J* = 7.2 Hz, 2H, CH₂-OH), 4.41 (q, *J* = 7.1 Hz, 2H, CH₂-OCO), 3.76 (t, *J* = 7.2 Hz, 1H, OH), 1.48 (t, *J* = 7.2 Hz, 3H, Me). ¹³C NMR (CDCl₃, 100 MHz): δ 183.2, 164.1, 150.6, 144.6, 137.6, 135.2, 133.3, 132.8, 131.5, 129.2, 127.7, 127.5, 122.9, 116.3,

111.2, 60.3, 53.6, 13.3. Anal. Calcd for C₂₁H₁₆ClNO₄: C, 66.06; H, 4.22; N, 3.67. Found: C, 66.09; H, 4.19; N, 3.69.

Methyl 2-(ethoxymethyl)-1-(4-nitrophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3c)

Compound **2c** (1.0 mmol, 0.4 g) in EtOH (10 mL) was heated at 60 °C for 24 h. Then EtOH was removed using a rotary evaporator. Finally, the precipitate was purified by preparative thin-layer chromatography (n-hexane/ethyl acetate = 4:1) to give product **3c** as a pale orange solid (0.24 g, 58%); mp 188-190 °C. **FT-IR (KBr, v, cm⁻¹)**: 3072, 2953, 2919, 2854, 1699, 1600, 1519 (NO₂), 1447, 1343 (NO₂), 1085. ¹H NMR (CDCl₃, 400 MHz): δ 8.47 (d, *J* = 8.9 Hz, 2H, Ph), 7.82 (d, *J* = 8.9 Hz, 2H, Ph), 7.46 (d, *J* = 6.7 Hz, 1H, Ph), 7.15-7.11 (m, 1H, Ph), 7.09-7.05 (m, 1H, Ph), 6.27

(d, J = 7.1 Hz, 1H, Ph), 4.59 (s, 2H, CH₂-O), 3.94 (s, 3H, CH₃-O), 3.47 (q, J = 7.0 Hz, 2H, O-C<u>H₂-CH₃</u>), 1.13 (t, J = 7.0 Hz, 3H, C<u>H₃-CH₂</u>).
¹³C NMR (CDCl3, 100 MHz): δ 183.0, 162.8, 150.6, 147.2, 140.5, 140.4, 137.6, 132.9, 131.6, 128.1, 127.5, 123.9, 123.1, 120.9, 116.3, 112.0, 64.7, 59.5, 50.9, 14.1. Anal. Calcd for C₂₂H₁₈N₂O₆: C, 65.02; H, 4.46; N, 6.89. Found: C, 65.07; H, 4.49; N, 6.84.

Hz, 2H, CH₂-N), 3.88 (br. 1H, OH), 1.83-1.75 (m, 2H, CH₂-CH₂-CH₂), 1.63 (s, 9H, C(CH₃)₃), 1.46-1.38 (m, 2H, CH₂-CH₃), 0.98 (t, *J* = 7.3 Hz, 3H, CH₃-CH₂). ¹³C NMR (100 MHz, CDCl₃): δ 183.2, 163.5, 149.6, 143.3, 138.2, 133.7, 131.5, 127.3, 122.7, 120.1, 116.0, 112.2, 80.9, 53.3, 44.9, 32.3, 27.3, 18.9, 12.7. Anal. Calcd for C₂₁H₂₅NO₄: C, 70.96; H, 7.09; N, 3.94. Found: C, 70.92; H, 7.11; N, 3.97. Methyl 2-(hydroxymethyl)-1-(4-hydroxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-*b*]pyrrole-3-carboxylate (3e).

A mixture of substrates **1f** (1.0 mmol, 0.37 g) and POCl₃ (1.3 mmol, 0.12 cc) in DMF (2 mL) was heated at 60 °C for 3 h. Water (50 mL) was then added and the mixture was stirred at 60 °C for 24 h. Finally, the precipitate was filtered and after drying was washed diethyl ether (10 mL) to give product **3e**. Orange solid (0.33 g, 93%); mp 228-230 °C. **FT-IR (KBr, v, cm⁻¹)**: 3421, 3160, 2924, 2855, 1706, 1677, 1606, 1443. ¹H NMR (DMSO-d₆, 400 MHz): δ 10.2 (s, 1H, O<u>H</u>-Ph), 7.40 (d, *J* = 8.6 Hz, 2H, Ph), 7.30 (d, *J* = 6.4 Hz, 1H, Ph), 7.17-7.10 (m, 2H, Ph), 6.96 (d, *J* = 8.6 Hz, 2H,

Ph), 6.17 (d, J = 6.8 Hz, 1H, Ph), 5.05 (t, J = 5.1 Hz, 1H, exchangeable with D₂O, CH₂-O<u>H</u>), 4.44 (d, J = 4.9 Hz, 2H, C<u>H₂-OH</u>), 3.76 (s, 3H, Me). ¹³C NMR (DMSO-d₆, 100 MHz): δ 183.9, 163.6, 158.7, 151.9, 146.0, 138.4, 134.3, 133.3, 128.9, 128.7, 126.6, 123.5, 117.5, 116.2, 110.1, 52.2, 51.6. ¹³C/DEPT-135 (DMSO-d₆, 100 MHz): δ 133.4, 129.2, 128.9, 123.7, 117.6, 116.4, 52.3 (negative peak), 52.2 (negative peak), 51.8. Anal. Calcd for C₂₀H₁₅NO₅: C, 68.76; H, 4.33; N, 4.01. Found: C, 68.72; H, 4.37; N, 3.97.

tert-Butyl 2-(hydroxymethyl)-1-(4-methoxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3f)

Purified by preparative thin-layer chromatography (*n*-hexane/ethyl acetate = 5:1). Orange solid (0.36 g, 87%); mp 194-196 °C. **FT-IR (KBr, v, cm**⁻¹): 3490, 3070, 2974, 2924, 2873, 1707, 1681, 1605, 1445, 1252, 1136. ¹**H NMR (CDCl₃, 400 MHz)**: δ 7.40-7.35 (m, 3H, Ph), 7.07-7.02 (m, 4H, Ph), 6.26 (d, *J* = 6.8 Hz, 1H, Ph), 4.46 (d, *J* = 6.0 Hz, 2H, C<u>H</u>₂-OH), 4.05 (t, *J* =6.3 Hz, 1H, OH), 3.91 (s, 3H, CH₃-O-Ph), 1.66 (s, 9H, C(CH₃)₃). ¹³C NMR (CDCl₃, 100 MHz): δ 183.4, 163.7, 159.4, 150.2,

71.10; H, 5.72; N, 3.45. Found: C, 71.13; H, 5.76; N, 3.40.

144.7, 137.9, 133.6, 131.3, 127.3, 127.0, 122.5, 120.0, 116.2, 113.9, 112.5, 81.0, 54.7, 53.8, 27.3. Anal. Calcd for $C_{24}H_{23}NO_5$: C,

tert-Butyl 2-(hydroxymethyl)-4-oxo-1-(p-tolyl)-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3g).

Purified by preparative-thin layer chromatography (*n*-hexane/acetone = 7:1). Pale orange, (0.32 g, 83%); mp 160-162 °C. **FT-IR (KBr, v, cm⁻¹)**: 3434, 2957, 2923, 2858, 1710, 1606, 1451. ¹H NMR **(CDCl₃, 400 MHz)**: δ 7.40-7.31 (m, 5H, Ph), 7.07- 6.99 (m, 2H, Ph), 6.26 (d, *J*=7.3 Hz, 1H, Ph), 4.46 (d, *J* = 7.0 Hz, 2H, CH₂-OH), 4.06 (t, *J* = 7.1 Hz, 1H, OH), 2.48 (s, 3H, CH₃-Ph), 1.66 (s, 9H, C(CH₃)₃). ¹³C NMR (CDCl₃, 100 MHz): δ 183.4, 163.7, 150.0, 144.6, 139.2, 137.9, 133.6, 131.8, 131.3, 129.4, 127.4, 125.9, 122.5, 120.1, 116.2, 112.6, 81.0, 53.8, 27.3, 20.3. Anal. Calcd for C₂₄H₂₃NO₄: C, 74.02; H, 5.95; N, 3.60. Found: C, 74.05; H, 5.92; N, 3.54.

Methyl 2-(hydroxymethyl)-1-(2-methoxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3h)

Purified by preparative thin layer chromatography (*n*-hexane/acetone = 3:1). Orange solid (0.29 g, 80%); mp 172-174 °C. **FT-IR (KBr, ν, cm⁻¹)**: 3440, 3065, 2921, 2853, 1708, 1607, 1514, 1451, 1291, 1019. ¹H NMR (CDCl₃, 400 MHz): δ 7.58-7.54 (m, 1H, Ph), 7.43-7.40 (m, 2H, Ph), 7.17-7.12 (m, 2H, Ph), 7.08-6.99 (m, 2H, Ph), 6.14 (d, *J* = 7.0 Hz, 1H, Ph), 4.61 (d, *J* = 14.0 Hz, 1H, C<u>H</u>-OH), 4.28 (d, *J* = 14.0 Hz, 1H, C<u>H</u>-OH), 3.97 (s, 3H, Me), 3.80 (s, 3H, Me), 3.24 (br. 1H). ¹³C NMR (CDCl₃,

100 MHz): δ 183.5,165.0, 153.8, 151.1, 146.0, 137.8, 133.7, 131.4, 130.7, 128.0, 127.4, 122.9, 122.6, 120.2, 115.9, 111.3, 109.7, 54.9, 54.1, 51.2. **Anal. Calcd for C₂₁H₁₇NO₅**: C, 69.41; H,4.72; N, 3.85. **Found**: C, 69.37; H, 4.78; N, 3.87.

Ethyl 1-(4-chlorophenyl)-2-(ethoxymethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3i).

Compound **2b** (1.0 mmol, 0.4 g) in EtOH (10 mL) was heated at 60 °C for 24 h. Then EtOH was removed using a rotary evaporator. Finally, the precipitate was purified by preparative thin-layer chromatography (*n*-hexane/ethyl acetate = 2:1) to give product **3i**. Pale orange solid (0.31 g, 75%); mp 150-152 °C. **FT-IR (KBr, v, cm⁻¹)**: 3068, 2972, 2925, 2866, 1719, 1609, 1445, 1090. ¹H NMR (CDCl₃, 400 MHz): δ 7.57-7.49 (m, 4H, Ph), 7.42 (d, *J* = 6.6 Hz, 1H, Ph), 7.11-7.02 (m, 2H,

Ph), 6.25 (d, *J* = 6.6 Hz, 1H, Ph), 4.54 (s, 2H, pyrrole-CH₂-O-), 4.37 (q, *J* = 7.1 Hz, 2H, CH₃-CH₂-OCO), 3.45 (q, *J* = 7.0 Hz, 2H, O-CH₂-CH₃), 1.45 (t, *J*= 7.1 Hz, 3H,CH₃-CH₂-OCO), 1.13 (t, *J*= 7.0 Hz, 3H, O-CH₂-CH₃). ¹³C NMR (CDCl₃, 100 MHz): δ 183.2, 162.5, 150.9, 140.4, 137.8, 134.9, 133.4, 133.2, 131.4, 129.3, 128.7, 127.7, 122.8, 120.4, 116.3, 112.0, 64.5, 59.7, 59.6, 14.1, 13.3. ¹³C/DEPT-135 (CDCl₃, 100 MHz,): δ 131.2, 129.1, 128.5, 127.5, 122.6, 116.1, 64.3, 59.5 (negative peak), 59.3 (negative peak), 13.9, 13.1. Anal. Calcd for C₂₃H₂₀ClNO₄: C, 67.40; H, 4.92; N, 3.42. Found: C, 67.44; H, 4.96; N, 3.38.

Ethyl 2-(azidomethyl)-1-(4-chlorophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3j)

A mixture of substrate **2b** (1.0 mmol, 0.4 g) and NaN₃ (1.5 mmol, 0.1 g) in DMF (2 mL) was heated at 60 °C for 3 h. Water was then added to the reaction solution. The obtained precipitate was filtered and washed with water (10 mL) to give product **3j**. Orange solid (0.29 g, 70%); mp 202 °C (decomp.). **FT-IR (KBr, v, cm⁻¹)**: 3062, 2977, 2925, 2089, 1705, 1607, 1447. ¹H **NMR (CDCl₃, 400 MHz)**: δ 7.60 (d, *J* = 8.6 Hz, 2H, Ph), 7.49 (d, *J* = 8.6 Hz, 2H, Ph), 7.43 (d, *J* = 6.7 Hz, 1H, Ph), 7.12-7.04 (m, 2H, Ph), 6.26 (d, *J* = 6.8 Hz, 1H, Ph), 4.43 (s, 2H, CH₂-N₃), 4.37 (q, *J* = 7.1

Hz, 2H, CH₂-CH₃), 1.45 (t, *J* = 7.1 Hz, 3H, Me). ¹³C NMR (CDCl₃, 100 MHz): δ 182.9, 162.2, 151.1, 137.6, 137.4, 135.5, 132.9, 132.6, 131.5, 129.3, 127.9, 127.6, 122.9, 120.4, 116.4, 112.1, 59.9, 42.4, 13.2. Anal. Calcd for C₂₁H₁₅ClN₄O₃: C, 62.00; H, 3.72; N, 13.77. Found: C, 62. 04; H, 3.77; N, 13.71.

4. IR, ¹H NMR and ¹³C NMR Spectra

Methyl 2-(chloromethyl)-4-oxo-1-phenyl-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2a)

Figure 2: ¹H NMR spectrum (400 MHz) of compound 2a in CDCl₃.

Figure 3: Expanded ¹H NMR spectrum (400 MHz) of compound 2a in CDCl₃.

Figure 4: Expanded ¹H NMR spectrum (400 MHz) of compound 2a in CDCl₃.

Figure 5: 13 C NMR spectrum (100 MHz) of compound 2a in CDCl₃.

Figure 6: Expanded ¹³C NMR spectrum (100 MHz) of compound **2a** in CDCl₃.

Figure 7: ¹³C/DEPT-135 spectrum (100 MHz) of compound 2a in CDCl₃.

Figure 8: Expanded ¹³C/DEPT-135 spectrum (100 MHz) of compound 2a in CDCl₃.

Figure 9: FT-IR (KBr) spectrum of 2b.

Figure 10: ¹H NMR spectrum (400 MHz) of compound 2b in CDCl_{3.}

Figure 11: Expanded ¹H NMR spectrum (400 MHz) of compound 2b in CDCl₃.

Figure 12: Expanded ¹H NMR spectrum (400 MHz) of compound 2b in CDCl₃.

Figure 13: Expanded ¹H NMR spectrum (400 MHz) of compound 2b in CDCl₃.

Figure 14: ¹³C NMR spectrum (100 MHz) of compound **2b** in CDCl₃.

Figure 15: Expanded ¹³C NMR spectrum (100 MHz) of compound 2b in CDCl₃.

Figure 16: Expanded ¹³C NMR spectrum (100 MHz) of compound 2b in CDCl₃.

Figure 17: FT-IR (KBr) spectrum of 2c.

Figure 18: ¹H NMR spectrum (400 MHz) of compound 2c in CDCl₃.

Figure 19: Expanded ¹H NMR spectrum (400 MHz) of compound 2c in CDCl₃.

Figure 20: Expanded ¹H NMR spectrum (400 MHz) of compound 2c in CDCl₃.

Figure 21: ¹³C NMR spectrum (100 MHz) of compound **2c** in DMSO-d₆. The low solubility of this compound even in DMSO-d₆ caused that some of peaks were not observed.

Figure 22: Expanded ¹³C NMR spectrum (100 MHz) of compound 2c in DMSO-d₆.

tert-Butyl 1-butyl-2-(chloromethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (2d)

Figure 24: ¹H NMR spectrum (400 MHz) of compound 2d in CDCl₃.

ррл

Figure 25: Expanded ¹H NMR spectrum (400 MHz) of compound 2d in CDCl₃.

Figure 26: Expanded ¹H NMR spectrum (400 MHz) of compound 2d in CDCl₃.

Figure 27: Expanded ¹H NMR spectrum (400 MHz) of compound 2d in CDCl₃.

Figure 28: ¹³C NMR spectrum (100 MHz) of compound 2d in CDCl₃.

Figure 29: Expanded ¹³C NMR spectrum (100 MHz) of compound 2d in CDCl₃.

Figure 30: Expanded ¹³C NMR spectrum (100 MHz) of compound 2d in CDCl₃.

Figure 31: Expanded ¹³C NMR spectrum (100 MHz) of compound 2d in CDCl₃.

Figure 32: Expanded ¹³C NMR spectrum (100 MHz) of compound 2d in CDCl₃.

3-Acetyl-2-(chloromethyl)-1-(3-morpholinopropyl)indeno[1,2-b]pyrrol-4-one (2e)

Figure 33: FT-IR (KBr) spectrum of 2e.

Figure 34: ¹H NMR spectrum (400 MHz) of compound 2e in CDCl₃.

Figure 35: Expanded ¹H NMR spectrum (400 MHz) of compound 2e in CDCl₃.

Figure 36: Expanded ¹H NMR spectrum (400 MHz) of compound 2e in CDCl₃.

Figure 37: ¹³C NMR spectrum (100 MHz) of compound 2e in CDCl₃.

Figure 38: Expanded ¹³C NMR spectrum (100 MHz) of compound 2e in CDCl₃.

Figure 39: FT-IR (KBr) spectrum of 3a.

Figure 40: ¹H NMR spectrum (400 MHz) of compound 3a in CDCl₃.

Figure 41: Expanded ¹H NMR spectrum (400 MHz) of compound 3a in CDCl₃.

Figure 42: Expanded ¹H NMR spectrum (400 MHz) of compound 3a in CDCl₃.

Figure 43: Expanded ¹H NMR spectrum (400 MHz) of compound 3a in CDCl₃.

Figure 44: ¹H NMR spectrum (400 MHz) of compound **3a** in CDCl₃/D₂O.

Figure 45: Expanded ¹H NMR spectrum (400 MHz) of compound 3a in CDCl₃/D₂O.

Figure 46: Expanded ¹H NMR spectrum (400 MHz) of compound **3a** in CDCl₃/D₂O.

Figure 47: ¹³C NMR spectrum (100 MHz) of compound 3a in CDCl₃.

Figure 48: Expanded ¹³C NMR spectrum (100 MHz) of compound 3a in CDCl₃.

Figure 49: Expanded ¹³C NMR spectrum (100 MHz) of compound 3a in CDCl₃.

Ethyl 1-(4-chlorophenyl)-2-(hydroxymethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3b)

Figure 50: FT-IR (KBr) spectrum of 3b.

Figure 51: ¹HNMR spectrum (400 MHz) of compound **3b** in CDCl₃.

Figure 52: Expanded ¹HNMR spectrum (400 MHz) of compound 3b in CDCl₃.

Figure 53: Expanded ¹HNMR spectrum (400 MHz) of compound **3b** in CDCl₃.

Figure 54: Expanded ¹H NMR spectrum (400 MHz) of compound **3b** in CDCl₃.

Figure 55: Expanded ¹H NMR spectrum (400 MHz) of compound **3b** in CDCl₃.

Figure 56: ¹³C NMR spectrum (100 MHz) of compound **3b** in CDCl₃.

Figure 57: Expanded ¹³C NMR spectrum (100 MHz) of compound 3b in CDCl₃.

Methyl 2-(ethoxymethyl)-1-(4-nitrophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3c)

Figure 58: FTIR (KBr) spectrum of 3c.

Figure 59: ¹H NMR spectrum (400 MHz) of compound 3c in CDCl₃.

Figure 60: Expanded ¹H NMR spectrum (400 MHz) of compound 3c in CDCl₃.

Figure 61: Expanded ¹H NMR spectrum (400 MHz) of compound 3c in CDCl₃.

Figure 62: Expanded ¹H NMR spectrum (400 MHz) of compound 3c in CDCl₃.

Figure 63: ¹³C NMR spectrum (100 MHz) of compound 3c in CDCl₃.

Figure 64: Expanded ¹³C NMR spectrum (100 MHz) of compound 3c in CDCl₃.

Figure 66: ¹H NMR spectrum (400 MHz) of compound 3d in CDCl₃.

Figure 67: Expanded ¹H NMR spectrum (400 MHz) of compound 3d in CDCl₃.

Figure 68: Expanded ¹H NMR spectrum (400 MHz) of compound 3d in CDCl₃.

Figure 69: Expanded ¹H NMR spectrum (400 MHz) of compound 3d in CDCl₃.

Figure 70: ¹³C NMR spectrum (100 MHz) of compound 3d in CDCl₃.

Figure 71: Expanded ¹³C NMR spectrum (100 MHz) of compound 3d in CDCl₃.

Figure 72: Expanded ¹³C NMR spectrum (100 MHz) of compound 3d in CDCl₃.

Methyl 2-(hydroxymethyl)-1-(4-hydroxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3e)

Figure 74: ¹H NMR spectrum (400 MHz) of compound **3e** in DMSO.

Figure 75: Expanded ¹H NMR spectrum (400 MHz) of compound 3e in DMSO.

Figure 76: Expanded ¹H NMR spectrum (400 MHz) of compound 3e in DMSO.

Figure 77: ¹H NMR spectrum (400 MHz) of compound **3e** in DMSO+ D₂O.

Figure 78: Expanded ¹H NMR spectrum (400 MHz) of compound 3e in DMSO+ D₂O.

Figure 79: Expanded ¹H NMR spectrum (400 MHz) of compound **3e** in DMSO+ D₂O.

Figure 80: Expanded ¹H NMR spectrum (400 MHz) of compound 3e in DMSO+ D₂O.

Figure 81: Expanded ¹H NMR spectrum (400 MHz) of compound **3e** in DMSO+ D₂O.

Figure 82: Expanded ¹H NMR spectrum (400 MHz) of compound **3e** in DMSO+ D₂O.

Figure 83: ¹³C NMR spectrum (100 MHz) of compound **3e** in DMSO.

Figure 84: Expanded ¹³C NMR spectrum (100 MHz) of compound **3e** in DMSO.

Figure 85: Expanded ¹³C NMR spectrum (100 MHz) of compound **3e** in DMSO.

Figure 86: ¹³C/DEPT-135 spectrum (100 MHz) of compound **3e** in DMSO.

Figure 87: Expanded ¹³C/DEPT-135 spectrum (100 MHz) of compound **3e** in DMSO.

Figure 88: Expanded ¹³C/DEPT-135 spectrum (100 MHz) of compound **3e** in DMSO.

tert-Butyl 2-(hydroxymethyl)-1-(4-methoxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3f)

Figure 90: ¹H NMR spectrum (400 MHz) of compound 3f in CDCl₃.

Figure 91: Expanded ¹H NMR spectrum (400 MHz) of compound 3f in CDCl₃.

Figure 92: Expanded ¹H NMR spectrum (400 MHz) of compound 3f in CDCl₃.

Figure 93: ¹³C NMR spectrum (100 MHz) of compound 3f in CDCl₃.

Figure 94: Expanded ¹³C NMR spectrum (100 MHz) of compound **3f** in CDCl₃.

1.0179

Figure 96: ¹H NMR spectrum (400 MHz) of compound 3g in CDCl₃.

Integral

ppe

Figure 97: Expanded ¹H NMR spectrum (400 MHz) of compound **3g** in CDCl₃.

Figure 98: Expanded ¹H NMR spectrum (400 MHz) of compound 3g in CDCl₃.

Figure 99: Expanded ¹H NMR spectrum (400 MHz) of compound 3g in CDCl₃.

Figure 100: Expanded ¹H NMR spectrum (400 MHz) of compound 3g in CDCl₃.

Figure 101: ¹³C NMR spectrum (100 MHz) of compound 3g in CDCl₃.

Figure 102: Expanded ¹³C NMR spectrum (100 MHz) of compound 3g in CDCl₃.

Figure 103: Expanded ¹³C NMR spectrum (100 MHz) of compound 3g in CDCl₃.

Methyl 2-(hydroxymethyl)-1-(2-methoxyphenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3h)

Figure 104: FT-IR (KBr) spectrum of 3h.

Figure 105: ¹H NMR spectrum (400 MHz) of compound **3h** in CDCl₃.

Figure 106: Expanded ¹H NMR spectrum (400 MHz) of compound **3h** in CDCl₃.

Figure 107: Expanded ¹H NMR spectrum (400 MHz) of compound **3h** in CDCl₃.

Figure 108: Expanded ¹H NMR spectrum (400 MHz) of compound 3h in CDCl₃.

Figure 109: ¹³C NMR spectrum (100 MHz) of compound **3h** in CDCl₃.

Figure 110: Expanded ¹³C NMR spectrum (100 MHz) of compound **3h** in CDCl₃.

Figure 111: Expanded ¹³C NMR spectrum (100 MHz) of compound **3h** in CDCl₃.

Ethyl 1-(4-chlorophenyl)-2-(ethoxymethyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3i)

Figure 112: FT-IR (KBr) spectrum of 3i.

Figure 113: ¹H NMR spectrum (400 MHz) of compound 3i in CDCl₃.

Figure 114: Expanded ¹H NMR spectrum (400 MHz) of compound 3i in CDCl₃.

Figure 115: Expanded ¹H NMR spectrum (400 MHz) of compound 3i in CDCl₃.

Figure 116: Expanded ¹H NMR spectrum (400 MHz) of compound 3i in CDCl₃.

Figure 117: ¹³C NMR spectrum (100 MHz) of compound **3i** in CDCl₃.

Figure 118: Expanded ¹³C NMR spectrum (100 MHz) of compound 3i in CDCl₃.

Figure 119: Expanded ¹³C NMR spectrum (100 MHz) of compound **3i** in CDCl₃.

Figure 120: Expanded ¹³C NMR spectrum (100 MHz) of compound 3i in CDCl₃.

Figure 121: ¹³C/DEPT-135 spectrum (100 MHz) of compound 3i in CDCl₃.

Figure 123: Expanded ¹³C/DEPT-135 spectrum (100 MHz) of compound 3i in CDCl₃.

Figure 124: Expanded ¹³C/DEPT-135 spectrum (100 MHz) of compound 3i in CDCl₃.

Ethyl 2-(azidomethyl)-1-(4-chlorophenyl)-4-oxo-1,4-dihydroindeno[1,2-b]pyrrole-3-carboxylate (3j)

Figure 125: FT-IR (KBr) spectrum of 3j.

Figure 126: ¹H NMR spectrum (400 MHz) of compound 3j in CDCl₃.

Figure 127: Expanded ¹H NMR spectrum (400 MHz) of compound 3j in CDCl₃.

Figure 128: Expanded ¹H NMR spectrum (400 MHz) of compound 3j in CDCl₃.

Figure 129: ¹³C NMR spectrum (100 MHz) of compound 3j in CDCl₃.

Figure 130: Expanded ¹³C NMR spectrum (100 MHz) of compound 3j in CDCl₃.

5. Nal in acetone test

The Nal in acetone test was carried out on Cl-products **2a-e**. Nucleophilic substitution of chlorine atom with iodine atom followed by the formation of NaCl precipitate in acetone proved the existence of chlorine atoms in these structures.

Figure 131. a) 2a-e solutions in acetone, b) after adding of Nal in acetone to 2a-e solutions and formation of NaCl precipitation

6. Crystallographic Data of 3f

Additional information crystallographic data of **3f** is available in the supplementary material Table 1.

	3f
Formula	C ₂₄ H ₂₂ NO ₅
M _r	404.4
Crystal description	Orange, block
Crystal size (mm)	$0.28 \times 0.23 \times 0.21$
Crystal system	Monoclinic
Space group	P21/c
<i>Т</i> (К)	95
<i>a</i> (Å)	8.8388 (3)
b (Å)	21.2913 (5)
<i>c</i> (Å)	10.8389 (4)
α(°)	90
в (°)	91.297 (3)
γ(°)	90
<i>V</i> (Å ³)	2039.24 (11)
Ζ	4
F(000)	852
<i>D</i> _x (g cm ⁻³)	1.317
Radiation type (λ, Å)	Cu Ka (1.54184)
μ (mm ⁻¹)	0.76
artheta range (°)	4.6 - 73.2
Index ranges	$-9 \le h \le 10$
	$-25 \le k \le 26$
	- 13 ≤ / ≤ 13
Diffractometer	SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction	Multi-scan

Table 1 Crystal data and structure refinement parameters for ${\bf 3f}$

	<i>CrysAlis PRO</i> 1.171.40.53 (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.811-1
Reflections collected	17655
Independent reflections	4016
$[l > 3\sigma(l)]$ reflections	3120
R _{int}	0.105
(sin θ/λ) _{max} (Å ⁻¹)	0.621
No. reflections, constraints, parameters, restraints	4016, 88, 272, 0
H-atom treatment	H-atom parameters constrained
$R\left[l>3\sigma(l)\right]$	0.076
R (all data)	0.247
S	3.78
Δho_{max} , Δho_{min} (e Å ⁻³)	0.55; -0.54
CCDC number	2227028

7. References

1 Computer program: CrysAlis PRO 1.171.41.117a, Rigaku OD (2021).

2 G. M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, **71**, 3–8, DOI: 10.1107/S2053273314026370.

3 V. Petříček, M. Dušek and L. Palatinus, Crystallographic Computing System JANA2006: General Features. Z. Kristallogr. -Cryst. Mater. 2014, **229**, 345–352, DOI: 10.1515/zkri-2014-1737.