Electronic supplementary information – First-principles study on structural, electronic and optical properties of halide double perovskite Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I)

Chol-Jun Yu, Il-Chol Ri, Hak-Myong Ri, Jong-Hyok Jang, Yun-Sim Kim and Un-Gi Jong

Computational Materials Design, Faculty of Materials Science, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea

and binary solids with crystalline phase and space group.								
Solid	Phase	Space group	Ref.	$E_{\rm tot} ({\rm Ry})$	$E_{\rm tot}$ per fu (Ry)			
Cs	fcc	Fm3̄m	[1]	-252.261140	-63.065285			
	bcc	Im3 m	[1]	-126.130728	-63.065364			
Ag	fcc	$Fm\bar{3}m$	[2]	-1182.487992	-295.621998			
In	tetragonal	I4/MMM	[3]	-266.963872	-133.481936			
	orthorhombic	Fmmm	[4]	-533.916447	-133.479112			
Sb	fcc	$Fm\bar{3}m$	[5]	-739.705388	-184.926347			
	tetragonal	I4/MMM	[5]	-369.909949	-184.954974			
	hexagonal	R3mh	[6]	-1109.711095	-184.951849			
AgF	cubic	Fm3 m		-1376.882710	-344.220678			
AgCl	cubic	$Fm\bar{3}m$	[7]	-1315.916179	-328.979045			
AgBr	cubic	Fm3 ¯ m	[8]	-1370.075394	-342.518849			
AgI	cubic	Fm3 ¯ m	[9]	-1445.211938	-361.302985			
	hexagonal	P63mc	[10]	-722.632490	-361.316245			
	zinc blende	F43m	[9]	-1445.267447	-361.316862			
CsF	cubic	Fm3m	[12]	-447.652490	-111.913122			
	cubic	Pm3m	[11]	-111.897148	-111.897148			
CsCl	cubic	Fm3 ¯ m	[12]	-386.585878	-96.646470			
	cubic	Pm3m	[11]	-96.641591	-96.641591			
CsBr	cubic	Fm3 ¯ m	[12]	-440.706264	-110.176566			
	cubic	Pm3m	[11]	-110.172869	-110.172869			
CsI	cubic	Fm3 ¯ m	[12]	-515.767250	-128.941813			
	cubic	Pm3m	[11]	-128.940813	-128.940813			
InF ₃	monoclinic	C12/m1	[13]	-1118.322334				
InCl ₃	monoclinic	C12/m1		-934.731573				
InBr ₃	monoclinic	C12/m1		-1097.071959				
InI ₃	monoclinic	P121/c1	[14]	-1322.317962				
SbF ₃	orthorhombic	Pnma	[15]	-1324.036195				
SbCl ₃	orthorhombic	Pnma		-1140.329477				
SbBr ₃	orthorhombic	Pbnm		-1302.674655				
SbI ₃	monoclinic	P121/c1		-1527.973965				

Table S1. Total energy (E_{tot}) and total energy per formula unit (fu) of elementary and binary solids with crystalline phase and space group.

*Corresponding author: Chol-Jun Yu, Email: cj.yu@ryongnamsan.edu.kp

		$E_{\rm tot}~({\rm Ry})$							
Compound	$E_{\rm tot}$ (Ry)	Cs	Ag	In/Sb	X ₂	ΔE (Ry)	E_f (eV/fu)		
Cs ₂ AgInF ₆	-847.752926	-126.130728	-1182.487992	-266.963872	-96.918306	-1.7633	-23.9915		
Cs ₂ AgInCl ₆	-756.016824	-126.130728	-1182.487992	-266.963872	-66.573755	-1.0609	-14.4342		
Cs ₂ AgInBr ₆	-837.175734	-126.130728	-1182.487992	-266.963872	-93.671579	-0.9263	-12.6034		
Cs ₂ AgInI ₆	-949.782210	-126.130728	-1182.487992	-266.963872	-131.271802	-0.7321	-9.9613		
Cs ₂ AgSbF ₆	-899.126947	-126.130728	-1182.487992	-369.909949	-96.918306	-1.6643	-22.6443		
Cs ₂ AgSbCl ₆	-807.416302	-126.130728	-1182.487992	-369.909949	-66.573755	-0.9873	-13.4334		
Cs ₂ AgSbBr ₆	-888.595342	-126.130728	-1182.487992	-369.909949	-93.671579	-0.8729	-11.8764		
Cs ₂ AgSbI ₆	-1001.224795	-126.130728	-1182.487992	-369.909949	-131.271802	-0.7017	-9.5469		

Table S2. Total energy (E_{tot}) of halide double perovskites CsAgBX₆ (B = In, Sb; X = F, Cl, Br, I) and elementary substances of Cs, Ag, In, Sb and X₂, and the elementary formation energy (E_f) per formula unit (fu).

Table S3. Total energy (E_{tot}) of halide double perovskites CsAgBX₆ and the binary compounds of CsX, AgX and BX₃, and the binary formation energy (E_f) per formula unit (fu).

	$E_{\rm tot}({\rm Ry})$							
Compound	$E_{\rm tot} ({\rm Ry})$	CsX	AgX	BX ₃	$\Delta E (\mathrm{Ry})$	E_f (eV/fu)		
Cs ₂ AgInF ₆	-847.752926	-447.652490	-1376.882710	-1118.322334	-0.1254	-1.7064		
Cs ₂ AgInCl ₆	-756.016824	-386.585878	-1315.916179	-934.731573	-0.0619	-0.8428		
Cs ₂ AgInBr ₆	-837.175734	-440.706264	-1370.075394	-1097.071959	-0.0358	-0.4866		
Cs ₂ AgInI ₆	-949.782210	-515.767250	-1445.267447	-1322.317962	-0.0022	-0.0304		
Cs ₂ AgSbF ₆	-899.126947	-447.652490	-1376.882710	-1324.036195	-0.0710	-0.9657		
Cs ₂ AgSbCl ₆	-807.416302	-386.585878	-1315.916179	-1140.329477	-0.0619	-0.8429		
Cs ₂ AgSbBr ₆	-888.595342	-440.706264	-1370.075394	-1302.674655	-0.0547	-0.7442		
Cs ₂ AgSbI ₆	-1001.224795	-515.767250	-1445.267447	-1527.990350	-0.0267	-0.3636		

Table S4. Effective mass of electron (m_e) and hole (m_h) in the three Cartesian directions (x, y, z), and their harmonic mean values calculated by $m^* = 3/(1/m_x + 1/m_y + 1/m_z)$.

	m _e				m_h				
Compound	x	у	Z	m^*		x	у	Z	m^*
Cs ₂ AgInF ₆	0.4090	0.4090	0.4090	0.4090		1.1829	1.1829	1.7791	1.3317
Cs ₂ AgInCl ₆	0.2716	0.2716	0.2716	0.2716		0.4626	0.4626	0.6030	0.5015
Cs ₂ AgInBr ₆	0.1614	0.1614	0.1614	0.1614		0.3392	0.3392	0.5077	0.3814
Cs ₂ AgInI ₆	0.1062	0.1062	0.1062	0.1062		0.2433	0.2433	0.4212	0.2832
Cs ₂ AgSbF ₆	0.6062	0.5826	0.5769	0.5883		0.5974	1.0447	0.7601	0.7601
Cs ₂ AgSbCl ₆	0.3646	0.3511	0.3479	0.3544		0.3382	0.5879	0.4294	0.4294
Cs ₂ AgSbBr ₆	0.2803	0.2659	0.2625	0.2693		0.2911	0.5181	0.3728	0.3728
Cs ₂ AgSbI ₆	0.2088	0.1895	0.1852	0.1940		0.2536	0.4508	0.3246	0.3246

Figure S1. Electronic band structures of all-inorganic halide double perovskites Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I), calculated with PBE functional.

Figure S2. Electronic band structures of all-inorganic halide double perovskites $Cs_2AgInCl_6$ (top) and $Cs_2AgSbCl_6$ (bottom), calculated with PBE (solid lines) and PBE+SOC (dashed lines).

Figure S3. Atom-projected total density of states (DOS) of all-inorganic halide double perovskites Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I), calculated with HSE hybrid functional.

Figure S4. Orbital-resolved partial density of states (PDOS) of all-inorganic halide double perovskites Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I), calculated with HSE hybrid functional.

Figure S5. (a) Real and (b) imaginary parts of macroscopic dielectric functions, (c) photo-absorption coefficients, and (d) reflectivity as functions of photon energy for Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I), calculated with the *GW* energies within RPA (i.e., *GW*-RPA).

Figure S6. (a) Real and (b) imaginary parts of macroscopic dielectric functions, (c) photo-absorption coefficients, and (d) reflectivity as functions of photon energy for Cs_2AgBX_6 (B = In, Sb; X = F, Cl, Br, I), calculated with the Kohn-Sham energies within RPA (i.e., KS-RPA).

References

- [1] C. E. Weir, G. J. Piermarini, S. Block, On the crystal structures of Cs II and Ga II, J. Chem. Phys. 1971, 54, 2768–2770.
- [2] I.-K. Suh, H. Ohta, Y. Waseda, High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, J. Mater. Sci. 1988, 23, 757–760.
- [3] E. G. Moshopoulou, R. M. Ibberson, J. L. Sarrao, J. D. Thompson, Z. Fisk, Structure of Ce₂RhIn₈: an example of complementary use of high-resolution neutron powder diffraction and reciprocal-space mapping to study complex materials, *Acta Crystal. B* 2006, *62*, 173–189.
- [4] K. Takemura, H. Fujihaza, High-pressure structural phase transition in indium, *Phys. Rev. B* 1993, 47, 8465–8470.
- [5] D. Akhtar, V. D. Vankar, T. C. Goel, K. L. Chopra, Metastable structures of liquid-quenched and vapour-quenched antimony films, J. Mater. Sci. 1979, 14, 988–994.
- [6] J. Q. Li, X. W. Feng, M. A. Sun, W. Q. Ao, F. S. Liu, Y. Du, Solvothermal synthesis of nano-sized skutterudite Co_{4-x}Fe_xSb₁₂ powders, *Mater. Chem. Phys.* 2008, 112, 57–62.
- [7] S. Hull, D. A. Keen, Pressure-induced phase transitions in AgCl, AgBr, and AgI, Phys. Rev. B 1999, 59, 750-761.
- [8] T. Benmessabih, B. Amrani, F. El haj Hassan, F. Hamdache, M. Zoaeter, Computational study of AgCl and AgBr semiconductors, *Physica B* 2007, 392, 309–317.
- [9] B. Amrani, R. Ahmed, F. El haj Hassan, A. H. Reshak, Structural, electronic and optical properties of AgI under pressure, *Phys. Lett. A* 2008, 372, 2502–2508.
- [10] A. Yoshiasa, K. Koto, K. Kanamaru, S. Emura, H. Horiuchi, Anharmonic thermal vibrations in wurtzite-type AgI, Acta Crystal. B 1987, 43, 434–440.
- [11] P. Cortona, Direct determination of self-consistent total energies and charge densities of solids: A study of the cohesive properties of the alkali halides, *Phys. Rev. B* **1992**, *46*, 2008–2014.
- [12] M. Blackman, I. H. Khan, The polymorphism of thallium and other halides at low temperatures, *Proc. Phys. Soc. London* 1961, 77, 471–475.
- [13] C. Hebecker, R. Hoppe, Zur Kristallstruktur von Indium- und Thallium trifluorid, Naturwissenschaften 1966, 53, 104.
- [14] J. D. Forrester, A. Zalkin, D. H. Templeton, Crystal and Molecular Structure of Indium(III) Iodide (In₂I₆), *Inorg. Chem.* 1964, *3*, 63–67.
- [15] A. J. Edwards, Fluoride crystal structures. Part XIV. Antimony trifluoride: A redetermination, J. Chem. Soc. A 1970, 1970, 2751–2753.