## Fluorescence detection of three types of pollutants based on fluorescence resonance energy transfer and its comparison with colorimetric detection

Yifei Kong, Dan Liu, Xinran Guo, Xinyue Chen\*

School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China.



Figure S1. The FTIR characterization of three types of pollutants.

\* Corresponding author

E-mail: chenxinyue888@126.com , Tel: +86-15293109642



Figure S2. Fluorescence spectra of Rhodamine B solution and UV-Vis absorption spectra of AuNPs.

| Various detection methods                     | Linear range   | LOD         | Ref.      |
|-----------------------------------------------|----------------|-------------|-----------|
| Peroxidase-mimicking catalytic activity of    | 0.1-0.5 µM     | 86 nM       | 2017 23   |
| gold nanoparticles                            |                |             |           |
| Streptomycin-specific single-stranded DNA     | 0.2-1.2 μM     | 200 nM      | 2013 48   |
| aptamers                                      |                |             |           |
| Colorimetric and fluorescence quenching       | 0-4 µM         | 73.1 nM     | 2016 21   |
| aptasensors                                   |                | 47.6 nM     |           |
| An electrochemical aptasensor                 | 30-1.5 μM      | 11.4 nM     | 2015 22   |
| Label-free fluorescent aptasensor             | 0-2 μM         | 54.5 nM     | 2016 17   |
| Self-Assembled Microgels                      | 0.05-100 ng/ml | 1.7 pg/ml   | 2019 19   |
| An electrochemical aptasensor                 | 0.05-200 ng/ml | 0.028 ng/ml | 2017 49   |
| Photoelectrochemical aptasensor based on CdTe | 0.1.50  mM     | 0.033 nM    | 2017 26   |
| quantum dots-single walled carbon nanohorns   | 0.1-30 mvi     |             |           |
| An electrochemical aptasensor                 | 0.1-700 pg/ml  | 0.033 pg/ml | 2018 16   |
| A photoelectrochemical aptasensor             | 0.05-150 nM    | 0.04 nM     | 2020 50   |
| Fluorescence colorimetric sensor              | 5 nM-1.25 μM   | 1.12 nM     | This work |

Table S1. Comparison of different detection methods of streptomycin.

Table S2. Comparison of different detection methods of benzidine.

| Tuble 52. Comparison of unreferit detection methods of benziume. |              |           |                   |  |
|------------------------------------------------------------------|--------------|-----------|-------------------|--|
| Various detection methods                                        | Linear range | LOD       | Ref.              |  |
| Thin-layer chromatography combined                               | 1-15 μg/L    | 0.23 µg/L | 2020 1            |  |
| with surface-enhanced raman scattering                           |              |           |                   |  |
| Durian-like multi-functional Fe <sub>3</sub> O <sub>4</sub> -Au  | -            | 1 μM      | 2013 4            |  |
| nanoparticles                                                    |              |           |                   |  |
| Platinum-Based and carbon-based                                  | 60 nM-250 μM | 1.2 nM    | 2012 <sup>3</sup> |  |
| screen-Printed Electrodes                                        |              |           |                   |  |
| Fluorescence colorimetric sensor                                 | 2.5-15 μM    | 56.52 nM  | This work         |  |

| Pesticides |                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
|------------|-------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1          | propiconazole           | C <sub>16</sub> H <sub>22</sub> ClN <sub>3</sub> O                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | triazole bactericidal<br>pesticides    |
| 2          | phosalone               | C <sub>12</sub> H <sub>15</sub> ClNO <sub>4</sub> PS <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | phosphate dithioesters<br>pesticides   |
| 3          | imidacloprid            | C <sub>9</sub> H <sub>10</sub> ClN <sub>5</sub> O <sub>2</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nitro methylene systemic<br>pesticides |
| 4          | tolclofos-methyl        | C <sub>9</sub> H <sub>11</sub> Cl <sub>2</sub> O <sub>3</sub> PS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | organophosphorus<br>pesticides         |
| 5          | azamethiphos            | C <sub>9</sub> H <sub>10</sub> ClN <sub>2</sub> O <sub>5</sub> PS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | organophosphorus<br>pesticides         |
| 6          | diazinon                | C <sub>12</sub> H <sub>21</sub> N <sub>2</sub> O <sub>3</sub> PS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | organophosphorus<br>pesticides         |
| 7          | isazofos                | C <sub>9</sub> H <sub>17</sub> ClN <sub>3</sub> O <sub>3</sub> PS | CH <sub>3</sub><br>H <sub>3</sub> C $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | organophosphorus<br>pesticides         |
| 8          | chlorpyrifos-<br>methyo | C7H7Cl3NO3PS                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | organophosphorus<br>pesticides         |
| 9          | formothion              | C <sub>6</sub> H <sub>12</sub> NO <sub>4</sub> PS <sub>2</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | organophosphorus<br>pesticides         |
| 10         | cyromazine              | C <sub>6</sub> H <sub>10</sub> N <sub>6</sub>                     | $H_{2N} \xrightarrow{NH_{2}} H_{2N} \xrightarrow{NH_{2}} H_{12N} NH$ | triazine insect growth<br>regulator    |

Table S3. A series of pesticides which were commonly used in most of crops to investigate the selectivity of cyromazine.

| 11 | thiamethoxam | C <sub>8</sub> H <sub>10</sub> ClN <sub>5</sub> O <sub>3</sub> S |  | organophosphorus<br>pesticides |
|----|--------------|------------------------------------------------------------------|--|--------------------------------|
|----|--------------|------------------------------------------------------------------|--|--------------------------------|

| Antibiotics |                               |                                                                  |                                           |                                              |
|-------------|-------------------------------|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| 1           | streptomycin                  | C <sub>21</sub> H <sub>39</sub> N <sub>7</sub> O <sub>12</sub>   |                                           | aminoglycoside antibiotics                   |
| 2           | ofloxacin                     | C <sub>18</sub> H <sub>20</sub> FN <sub>3</sub> O <sub>4</sub>   |                                           | fluoroquinolone<br>antimicrobials            |
| 3           | amoxicillin                   | $C_{16}H_{19}N_3O_5S$                                            | HO LO | $\beta$ -lactam antibiotics                  |
| 4           | erythrocin                    | C <sub>37</sub> H <sub>67</sub> NO <sub>13</sub>                 |                                           | macrolide antibiotics                        |
| 5           | clarithromycin                | C <sub>38</sub> H <sub>69</sub> NO <sub>13</sub>                 |                                           | macrolide antibiotics                        |
| 6           | ampicillin                    | C <sub>16</sub> H <sub>19</sub> N <sub>3</sub> O <sub>4</sub> S  |                                           | $\beta$ -lactam antibiotics                  |
| 7           | benzylpenicillin<br>potassium | C <sub>16</sub> H <sub>17</sub> KN <sub>2</sub> O <sub>4</sub> S |                                           | $\beta$ -lactam antibiotics                  |
| 8           | roxithromycin                 | C <sub>41</sub> H <sub>76</sub> N <sub>2</sub> O <sub>15</sub>   |                                           | macrolide antibiotics                        |
| 9           | norfloxacin                   | C <sub>16</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>3</sub>   | F<br>HN<br>HN<br>CH <sub>3</sub>          | third-generation quinolone<br>antimicrobials |

Table S4. Various antibiotics which were common broad-spectrum antimicrobials to investigate the selectivity of streptomycin.

| 10 | ciprofloxacin | C <sub>17</sub> H <sub>18</sub> FN <sub>3</sub> O |  | third-generation quinolone<br>antimicrobials |
|----|---------------|---------------------------------------------------|--|----------------------------------------------|
|----|---------------|---------------------------------------------------|--|----------------------------------------------|

|   | Chemical agents                                |                                                |                                       |                                                 |  |  |
|---|------------------------------------------------|------------------------------------------------|---------------------------------------|-------------------------------------------------|--|--|
| 1 | acetaminophen                                  | C <sub>8</sub> H <sub>9</sub> NO <sub>2</sub>  | HO                                    | acetanilide<br>compounds                        |  |  |
| 2 | dimethylaminobenzaldehyde                      | C <sub>9</sub> H <sub>11</sub> NO              |                                       | amino benzaldehyde<br>compounds                 |  |  |
| 3 | salicylic acid                                 | C <sub>7</sub> H <sub>6</sub> O <sub>3</sub>   | ОН                                    | benzoic acid<br>compounds                       |  |  |
| 4 | para aminobenzoic acid                         | C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub>  | H <sub>2</sub> N OH                   | aminobenzoic acid<br>compounds                  |  |  |
| 5 | phenol                                         | $C_6H_6O$                                      | OH                                    | phenolic<br>compounds                           |  |  |
| 6 | naphthalene                                    | C <sub>10</sub> H <sub>8</sub>                 |                                       | polycyclic aromatic<br>hydrocarbon<br>compounds |  |  |
| 7 | 5-methyl-2-phenyl-1,2-<br>dihydropyrazol-3-one | $C_{10}H_{10}N_2O$                             | E E E E E E E E E E E E E E E E E E E | phenylpyrroles                                  |  |  |
| 8 | benzidine                                      | C <sub>12</sub> H <sub>12</sub> N <sub>2</sub> |                                       | aromatic diamine<br>compounds                   |  |  |

Table S5. A series of chemical reagents with similar structure to investigate the selectivity of benzidine.