# **ELECTRONIC SUPPLEMENTARY INFORMATION**

## for the paper entitled

# Novel hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands with improved solubility and performance in An/Ln separations

Yong Qiang Wan<sup>a</sup> Huai Xin Hao<sup>b</sup> Yu Lu<sup>a</sup>, Zhi Peng Wang<sup>\*b</sup>, Pavle Mocilac<sup>\*a</sup>

<sup>a</sup>School of Nuclear Science and Technology, Lanzhou University, Lanzhou, P.R. China

<sup>b</sup>Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, P. R. China

\*Corresponding authors e-mail addresses: pavlem@lzu.edu.cn

wangzhipeng@mail.tsinghua.edu.cn

# Contents

| 1.    | Molecular Structures                                                    |
|-------|-------------------------------------------------------------------------|
| 2.    | Synthetic Procedures and Characterization Data5                         |
| 2.1.  | General procedures, materials, and instruments5                         |
| 2.2.  | Synthetic Procedures6                                                   |
| 2.3.  | Characterization data14                                                 |
| 2.3.1 | . NMR14                                                                 |
| 2.3.2 | 2. Mass spectra                                                         |
| 2.2.4 | 43. FTIR spectra                                                        |
| 2.3.5 | 5. UV-Vis spectra45                                                     |
| 3.    | Solvent Extraction Studies                                              |
| 3.1.  | General information and procedures for the solvent extraction studies47 |
| 3.2.  | Protocols and tables47                                                  |
| 3.3.  | Results                                                                 |
| 4.    | Spectroscopic titrations                                                |
| 6.    | References                                                              |

# 1. Molecular Structures



Structure 1: 20H-BTrzPhen<sup>1</sup>



Structure 2: 40H-BTrzPhen<sup>1</sup>







Structure 4: DAA-BTrzPhen, Ligand 2



**Structure 5: TODGA** 

#### 2. Synthetic Procedures and Characterization Data

#### 2.1. General procedures, materials, and instruments

The reagents and solvents were purchased from the multiple vendors and suppliers such as Macklin, TCI, Innochem, Keshi, Xilong Sci and Rionlon and were of standard reagent purity and quality. When necessary, solvents were purified and dried using standard procedures involving solvent distillation over appropriate drying agent and/or using activated molecular sieves Å3 or Å4. Normal phase thin layer chromatography was performed by using TLC silica gel 60 on aluminium plates with F<sub>254</sub> indicator (Merck, product code 1.05554.0001), while the reverse phase TLC was performed by using 60 RP-18 silica aluminium TLC plates (5  $\times$  7.5 cm) with  $F_{254}S$  indicator (Merck, product code 1.05560.0001). As an inert gas, 99.999% dinitrogen was used. Preparative column chromatography was performed using technical grade silica gel (pore size: 60 Å, 60-200 µm) procured from Sigma-Aldrich or Bangkai (Qingdao, China). Reverse phase preparative column chromatography was performed by using glass semi-preparative columns (Suke Shiye Co. Shanghai) and EasySep-1050 pump stations (UniMicro Tech. Shanghai), collected manually, C-18 silica (40-60 µm) was supplied by Bangkai (Qingdao, China). <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded with JEOL JMN ECS 400M spectrometer in deuterated solvents (CDCl<sub>3</sub>, DMSO-d<sub>6</sub> or D<sub>2</sub>O, in certain cases in D<sub>2</sub>O with added TFA-d) with <sup>1</sup>H-NMR at 400 MHz and <sup>13</sup>C-NMR at 100.5 MHz. NMR assignments were supported by 2D, <sup>1</sup>H-<sup>1</sup>H COSY and <sup>13</sup>C-<sup>1</sup>H HSQC and HMBC experiments. Chemical shifts ( $\delta$ ) are quoted in parts per million (ppm) to the nearest 0.01 ppm, calibrated to the relevant residual solvent peaks. Coupling constants are reported in Hz. Signal multiplicity is described with the use of the abbreviations: [s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad]. IR spectroscopy was done using KBr disc method by using Nicolete NEXUS 670 FTIR spectrometer, spectral bands are estimated as s (strong), m(medium) or weak(w). Mass spectroscopy characterisation (low resolution) was routinely performed by using Bruker micrOTOF II mass spectrometer (ESI-TOF) in either positive or negative mode. MS with APCI ionisation for the compound 3 was performed on Thermo Fisher Ultimate 3000 Analytical and MSQ Plus instrument, while the high-resolution mass spectroscopy was performed on LCMS-IT/TOF (Shimadzu, Japan) at Department of Chemistry, Tsinghua University. Elemental analysis (CHN) was performed by using Vario EL cube elemental analyser. UV-Vis characterisation was performed using UNICO UV-4802S spectrometer. Spectroscopic titrations were performed on Perkin Elmer Lambda 35 UV-Vis spectrometer and fluorescence emission was recorded on fluorescence spectroscopy system consisting of Kymera 32 Bi-A detectors/cameras and Opotek Radiant 355 LD laser light source.

#### 2.2. Synthetic Procedures

2.2.1 2,9-Diethynyl-1,10-Phenanthroline (PhenDE, compound 3)<sup>1</sup>



Two-neck flask (500 ml) equipped with proper magnetic stir bar, suba-seal, and a supply of inert gas (N<sub>2</sub>) was charged with 3.0 g (12.7 mmol) of 2,9-dicarbalehyde-1,10-phenanthroline<sup>1</sup> (1) and 5.27 g (38.1 mmol, 3 equiv.) K<sub>2</sub>CO<sub>3</sub> and 150 ml of dry methanol was added. Then 5.04 ml of dimethyl (1-diazo-2-oxopropyl) phosphonate (**2**) (Ohira-Bestmann reagent, 26.67 mmol, 2.1 equiv.) was dissolved in dry methanol (100 ml) and added into the flask. The reaction was left to stir for 3 hours at room temperature. After 3 hours, the solution was diluted with chloroform (500 ml) and washed twice with 200 ml saturated aqueous NaHCO<sub>3</sub> and then twice with 100 ml of brine. The organic solution was then dried by MgSO<sub>4</sub> and evaporated by using a rotary evaporator. The raw material was purified by chromatography with a solution blend (chloroform: ethyl acetate: methanol: triethylamine = 80:14:6:0.1) as a mobile phase, 1.103 g of pale-yellow solid was obtained (38%). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  8.20-8.18 (d, *J* = 8.2 Hz, 2H), 7.78-7.76 (d, *J* = 8.3 Hz, 4H), 3.29 (t, 2H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  145.67, 142.90, 136.44-136.17, 128.27, 127.21, 126.91, 83.71-83.5, 78.71-78.13; MS (APCI<sup>+</sup>) *m/z* calcd. for [M+H]<sup>+</sup>:229.08 found: 229.2, calcd. for [M+Na]<sup>+</sup>:251.06 found: 251.1

#### 2.2.2 Sodium 4-(2-bromoethyl)benzenesulfonate (AzEBS, compound 4)<sup>2</sup>



2.0 g (7 mmol) of 4-(2-bromoethyl) benzene sulfonate was dissolved in 10 ml of  $H_2O$  and 10 ml of ethanol in a round bottom flask (100 ml) and equipped with a magnetic stir bar. Then 1.0 g (15.33 mmol, 2.2 equiv.) of sodium azide was dissolved in 10 ml of water and 10 ml of ethanol and transferred into the reaction flask, The reaction mixture was stirred and heated to 98°C for 12 hours. After 12 hours, the reaction mixture was evaporated by using a rotary

evaporator and the product was dried in high vacuum. The raw material was purified by recrystallization with water and isopropanol system. Obtained was 961 mg (68%) of pure product. <sup>1</sup>H-NMR (D<sub>2</sub>O)  $\delta$  7.81-7.79 (d, *J* = 8.4 Hz, 2H), 7.50-7.48 (d, *J* = 8.3 Hz, 2H), 3.65 (t, *J* = 6.8, 2H), 3.03 (t, *J* = 6.8, 2H); <sup>13</sup>C-NMR (D<sub>2</sub>O)  $\delta$  142.71, 140.72, 129.47, 125.74, 51.79, 34.30; ESI-MS: *m/z* calcd. for C<sub>8</sub>H<sub>8</sub>N<sub>3</sub>O<sub>3</sub>S<sup>-</sup> or [M-Na]<sup>-</sup>: 226.08, found: 226.0779; FT-IR (KBr disc): *v*<sub>max</sub> 3413(m), 2137(s), 1236(s), 1184(s), 1134(s), 1051(s), 837(m), 700(s).

# 2.2.3. Disodium 2,9-bis[1-(2-(4-sulfonatophenyl)ethyl)-1H-1,2,3-triazol-4-yl]-1,10-phenanthroline (DS-BTrzPhen, Ligand 1)<sup>1</sup>



A Schlenk tube (250 ml) was charged with 350 mg (1.53 mmol) of 2,9-diethynyl-1,10phenanthroline (Compound **2**), 864 mg (3.47 mmol, 2.26 equiv.) of Sodium 4-(2bromoethyl)benzenesulfonate (AzEBS, compound **3**), 594 mg (3.37 mmol, 2.2 equiv.) of sodium ascorbate and a proper stirring bar. The Schlenk tube was capped with a rubber septum seal and hooked onto Schlenk line. It was evacuated and refilled with inert gas three times and kept under inert gas. Then 38 ml of degassed dichloromethane was added as well as with 33 ml of degassed water *via* septum by using syringe and needle. Next, 1.34 ml (7.67 mmol, 5 equiv.) of diisopropylethylamine (DIPEA) was added into the Schlenk tube and finally 3.53 ml (2.3 mol%) of Cu (II)-TBTA solution (prepared by mixing 65 mg of TBTA and 30 mg of CuSO<sub>4</sub> × 5H<sub>2</sub>O in 11.8 ml of degassed water/DMSO 1:1 solvent blend) was added drop by drop by using gas-tight syringe and needle while vigorously stirring the reaction mixture. During the addition of the copper catalyst colour of the reaction mixture changed from light yellow orange into deep red brown. The reaction mixture was left to stir at room temperature under inert gas for 72 hours. During this time deep red-brown colour of the dichloromethane layer moved onto aqueous layer indicating transfer of phenanthroline moiety from dichloromethane to water. After 72 hours the reaction mixture was centrifuged (5 minutes at 5000 rpm) to fully remove light yellow dichloromethane layer from deep red-brown aqueous layer. The dichloromethane layer was discarded while aqueous layer was transferred into 250 ml RB flask and carefully evaporated by using rotary evaporator to full dryness.

The resulting raw material was re-dissolved in a mixture of 15 ml of water and 15 ml of methanol (sonication was applied to help dissolving). Next, the mixture was heated by using heat gun and it was cooled down, left overnight to crystallize. After crystallization, the mixture was filtered and the solid was washed by acetone and diethyl ether. Then the solid was dried, raw yellow product was weighted to yield 0.879 g. The raw product was purified by reverse phase chromatography on C-18 silica starting with water as mobile phase and then gradually increasing concentration of methanol from 0% to 30%. The purified material was evaporated, triturated with acetone, filtered washed with diethyl ether, and dried under high vacuum. Total yield was 0.774 g (80%). Found: C, 47.40; H, 4.01; N, 13.82 %; Na<sub>2</sub>C<sub>32</sub>H<sub>24</sub>O<sub>6</sub>N<sub>8</sub>S<sub>2</sub>×4.5H<sub>2</sub>O requires C, 47.58; H, 4.13; N, 13.87 %; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  9.21 (s, 2H), 8.63-8.61 (d, *J* = 8.4 Hz, 2H), 8.38-8.36 (d, *J* = 8.2 Hz, 2H), 8.01 (s, 2H), 7.55-7.53 (d, *J* = 8.1 Hz, 4H), 7.07 (s, 4H), 4.54 (s, 4H), 3.09 (s, 4H); <sup>13</sup>C NMR (DMSO- $d_6$ )  $\delta$  149.42, 146.73, 146.66, 144.56, 137.74, 137.30, 128.02, 127.52, 126.14, 125.51, 124.31, 120.16, 50.32, 34.90; MS(ESI<sup>-</sup>) *m/z* calcd. for C<sub>32</sub>H<sub>25</sub>O<sub>6</sub>N<sub>8</sub>S<sub>2<sup>-</sup></sub> or [M-2Na+H]<sup>-</sup>: 681.1338, found: 681.1406; HRMS (ESI) *m/z* calcd. for C<sub>32</sub>H<sub>25</sub>O<sub>6</sub>N<sub>8</sub>S<sub>2<sup>-</sup></sub> or [M-2Na+H]<sup>-</sup>: 681.1338, found: 681.1334.

2.2.4. Benzyl N-(tert-butoxycarbonyl)homoserinate (NBOB-HS, Compound 5)<sup>3</sup>



A cryo-reactor was set to the temperature of  $-10^{\circ}$ C. A 1 L three-neck round bottom flask was equipped with a proper stirring bar and flame dried under high vacuum by using a heat gun. 5 g (15.15 mmol) of *N*-Boc-*O*-Bn-L-aspartic acid was placed into the flask and the flask was connected with inert gas (N<sub>2</sub>). 60 mL of dry THF was added by a syringe and needle under a constant stream of N<sub>2</sub>. The flask was immersed into the cooler and let to stir for 5 minutes at  $-10 \,^{\circ}$ C. Then 1.83 mL (16.67 mmol, 1.1 equiv.) of *N*-methyl morpholine was added. Then, 2.11 mL (15.91 mmol, 1.05 equiv.) *iso*-butyl chloroformate was added over 15 minutes at  $-10 \,^{\circ}$ C.

Next, 3.61 g (92.44 mmol,6.1 equiv.) sodium borohydride was added quickly, then 150 mL of the dry methanol was added over a time period of 45 minutes by using a syringe pump. The reaction mixture was left stir for additional 50 minutes at -10 °C.

Reaction was quenched with 40 mL aqueous 1 M hydrochloric acid solution and reaction mixture was neutralised. Then the reaction mixture was warmed to room temperature and evaporated by using a rotary evaporator until only the aqueous solution remained. The solution was transferred into a 500 mL separating funnel, aqueous solution was extracted with three 100 mL portions of ethyl acetate. The organic layers were combined washed successively with 100 mL of saturated ammonium solution, two 100 mL portions of pure water, 100 mL of saturated sodium bicarbonate, and two 100 mL portions of brine. The organic layer was dried with MgSO<sub>4</sub>, filtered, and evaporated to obtain 5.5 g of raw oily material. The raw material was purified by chromatography using 3% methanol in dichloromethane as mobile phase. Obtained was 2.05 g (47%) of white product. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  7.35 (m, 5H), 5.40 (s, 1H), 5.18 (m, 2H), 4.53 (m, 1H), 3.69 (m, 2H), 2.77 (s, 1H), 2.16 (m, 1H), 1.63 (m, 1H), 1.44 (s, 9H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  172.84, 156.58, 135.33, 128.77, 128.65, 128.41, 80.64, 67.43, 58.38, 50.77, 36.29, 28.38; MS (ESI<sup>+</sup>) *m/z* calcd. for C<sub>16</sub>H<sub>23</sub>O<sub>5</sub>N+Na or [M+Na]<sup>+</sup>: 332.21, found: 332.2071.

#### 2.2.5. Benzyl N-(tert-butoxycarbonyl)-O-tosyl-homoserinate (NBOB-HS-Ts, Compound 6)<sup>3</sup>



A 50 mL Schlenk tube was dried and equipped with a proper magnetic stirring bar. Then 1.7 g (5.50 mmol) of benzyl (tert-butoxycarbonyl)homoserinate (NBOB-HS, Compound **5**) and 136 mg (1.1 mmol, 0.2 equiv.) of DMAP was added into the tube. The Schlenk tube was capped with a rubber septum seal, hooked onto Schlenk line, and evacuated/refilled with inert gas three times and kept under inert gas. 68 ml of dry dichloromethane and 1.82 mL (13.08 mmol, 2.38 equiv.) of triethylamine were added by syringe and the Schlenk tube was placed into an ice bath. Then 1.306 g (6.81 mmol,1.24 equiv.) *p*-toluene sulfonyl chloride (TosCl) was added by using 5 mL of dry dichloromethane and a gas tight syringe, into the Schlenk tube. The reaction

mixture turned cloudy and yellow and the Schlenk tube was taken out of the ice bath and was left to stir for 3 hours at room temperature.

After 3 hours, reaction mixture was quenched by adding 75 mL of saturated ammonium chloride solution, and the reaction mixture was transferred into to a 500 mL separating funnel. The organic layer was collected and washed with two twice with 75 mL of saturated sodium chloride solution. The aqueous layer was back extracted with two 100 mL portions of dichloromethane. All of the organic layer was combined into a conical flask, dried with MgSO<sub>4</sub>, filtered and evaporated by using a rotary evaporator. The raw material was purified by chromatography with a mixture of 5% ethyl acetate in dichloromethane as mobile phase. Finally, 1.825 g of white product was obtained (72 %). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  7.78-7.75 (d, J = 8.3 Hz, 2H), 7.35-7.31 (m, 7H), 5.13 (s, 2H), 5.10 (m, 1H), 4.35 (s, 1H), 4.10 (m, 2H), 2.44 (s, 3H), 2.23 (m, 1H), 212 (m, 1H), 1.40 (s, 9H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  171.56, 155.27, 145.05, 135.21, 132.81, 130.00, 128.77, 128.66, 128.55, 128.15, 80.31, 67.68, 66.35, 50.73, 31.62, 28.36, 21.78; MS (ESI<sup>+</sup>) *m/z* calcd. for C<sub>23</sub>H<sub>29</sub>O<sub>7</sub>NS+Na<sup>+</sup> or [M+Na]<sup>+</sup>: 486.26; found: 486.2599

 Benzyl 4-azido-2-*N*-((*tert*-butoxycarbonyl)amino)butanoate (NBOB-AHA, Compound 7)<sup>3</sup>



A 250 mL Schlenk tube was dried and equipped with a magnetic stirring bar. 4 g (12.20 mmol) of Benzyl *N*-(*tert*-butoxycarbonyl)-*O*-tosyl-homoserinate (NBOB-HS-Ts, Compound **6**) and 2.380 g (36.61 mmol, 3 equiv.) of sodium azide was added into the Schlenk tube. The Schlenk tube was capped with a rubber septum seal and hooked onto Schlenk line. It was evacuated and refilled with inert gas three times and kept under inert gas. 80 mL of dry *N*,*N*-dimethyl formamide was added by syringe and the Schlenk tube was placed in an oil bath (80 °C). The reaction mixture was left to stir for overnight. After 24 hours, solvent was evaporated by using a rotary evaporator. Then the compound was dissolved and transferred into a 1 L separating funnel by using 400 mL of dichloromethane. The dichloromethane solution of the product was washed by two 150 mL portions of brine. Organic layers were collected into a 500 mL conical flask, dried with MgSO<sub>4</sub>, filtered, and evaporated by using a rotary evaporator. The raw material was purified by chromatography with 20% of ethyl acetate in petroleum ether as

mobile phase, 2.642 g of pure product was obtained (65%). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$  7.36-7.26 (m, 5H), 5.20-5.18 (m, 3H), 4.44 (s, 1H), 3.37 (t, *J* = 6.7 Hz, 2H), 2.21 (m, 1H), 1.93 (m, 1H), 1.44 (s, 9H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  171.96, 155.40, 135.26, 128.78, 128.70, 128.55, 80.33, 67.54, 51.54, 47.81, 31.92, 28.39; MS(ESI<sup>+</sup>) *m/z* calcd. for C<sub>16</sub>H<sub>22</sub>O<sub>4</sub>N<sub>4</sub>+Na<sup>+</sup> or [M+Na]<sup>+</sup>: 357.26 found: 357.2605, *m/z* calcd. for C<sub>16</sub>H<sub>22</sub>O<sub>4</sub>N<sub>4</sub>+K<sup>+</sup> or [M+K]<sup>+</sup>: 373.23, found: 373.2349.

2.2.7. L-Azidohomoalanine hydrochloride (L-AHA, Compound 8)<sup>3</sup>



First step: the removal of the benzyl protecting group (NB-L-AHA).

A round bottom flask (250 ml) was charged with 3.628 g (11.07 mmol) of Benzyl 4-azido-2-*N*-((*tert*-butoxycarbonyl)amino)butanoate (NBOB-AHA, Compound 7) and a proper stirring bar. Then 31mL of methanol and 31 mL of THF were added into the flask. Then the flask was closed with a stopper and it was placed in an ice bath for 5 minutes. Next, 31 mL of LiOH aqueous solution (2 M) was added dropwise. The flask was removed from ice bath and stir for 1 hour. After 1 hour the solvents were evaporated by a rotary evaporator. 50 mL of pure water was added, and the pH of the solution was adjusted to 7 with aqueous 1 M KHSO<sub>4</sub>. Then the solution was transferred into a 250 mL separating funnel and was extracted five times with 100 mL of dichloromethane. All dichloromethane layers were combined into a 1 L conical flask dried with MgSO<sub>4</sub>, filtered, and evaporated by using a rotary evaporator. Obtained was 3.346 g of raw material suitable for the second step.

Second step: the removal of the Boc group

A round bottom flask (100 ml) was charged with 3.346 g of raw material from the previous step (NB-L-AHA) and a proper stirring bar was added. Then 41 mL of HCl in 1,4-dioxane (4 M) was added into the flask by a syringe. The mixture was stirred for 1 hour. After 1 hour formed suspension was filtered by using a fritted funnel. The collected solid was washed twice with 20 mL portions of 1,4-dioxane, dry, and weighted to obtain 1.228 g of L-AHA product. Then filtrate was evaporated and washed with dichloromethane and petroleum ether, after which additional 0.296 g of product was obtained. The total yield was 1.524 g of L-AHA (78%).

<sup>1</sup>H NMR (D<sub>2</sub>O)  $\delta$  4.18 (t, J = 6.4 Hz, 1H), 3.64 (m, 2H), 2.23 (m, 2H); <sup>13</sup>C NMR (D<sub>2</sub>O)  $\delta$  171.73, 51.08, 47.09, 29.06; MS (ESI<sup>+</sup>) m/z calcd. for [M+H]<sup>+</sup>: 145.07; found: 145.0968; FT-

IR (KBr disc): *v*max 3457 (s), 3124 (m), 2151(m), 2109 (s), 1741 (s), 1502 (m), 1401 (s), 1369(m), 1295(m), 1215(s).

2.2.7. 2,9-bis[1-(3-amino-3-carboxyl-propyl)-1H-1,2,3-triazol-4-yl]-1,10-phenanthroline, (DAA-BTrzPhen, Ligand **2**)<sup>1</sup>



A Schlenk tube (250 ml) was charged with 500 mg (2.19 mmol) of 2,9-diethynyl-1,10phenanthroline (Compound 2), 895 mg (4.95 mmol, 2.26 equiv.) of L-azidohomoalanine hydrochloride (Compound 6), 850 mg (4.82 mmol, 2.2 equiv.) of sodium ascorbate and a proper stirring bar. The Schlenk tube was capped with a rubber septum seal and hooked onto Schlenk line, evacuated and refilled with inert gas three times and kept under inert gas. Then, 54 ml of degassed dichloromethane was added as well as with 49 ml of degassed water via septum by using syringe and needle. Next, 2.8 ml (16.1 mmol, 7.35 equiv.) of diisopropylethylamine (DIPEA) was added into the Schlenk tube, and finally 5.04 ml (2.3 mol%) of Cu(II)-TBTA solution (prepared by mixing 65 mg of TBTA and 30 mg of CuSO<sub>4</sub>  $\times$ 5H<sub>2</sub>O in 11.8 ml of degassed water/DMSO 1:1 solvent mixture) was added drop by drop while vigorously stirring the reaction mixture. During the addition of the copper catalyst colour of the reaction mixture changed from light yellow orange into deep red brown. The reaction mixture was left to stir at room temperature under inert gas for 72 hours. During this time deep red-brown colour of the dichloromethane layer moved into the aqueous layer indicating transfer of phenanthroline moiety from dichloromethane to water. After 72 hours the reaction mixture was centrifuged to fully remove light yellow dichloromethane layer from deep red-brown aqueous layer. The dichloromethane layer was discarded while aqueous layer was transferred into 250 ml round bottom flask and carefully evaporated by using rotary evaporator to full dryness. The resulting raw material was re-dissolved in 30 ml of water (sonication was applied to help solubilise solid) and pH was adjusted to neutral with acetic acid. Next, 30 ml of methanol was added inducing precipitation. The suspension was sonicated to fully remove the precipitate from the flask wall and then filtered on a fritted funnel. The raw yellow product was weighted to yield 1.477 g. The raw product was purified by reverse phase chromatography on

C-18 silica starting with 1% of ammonia in water as mobile phase and then gradually increasing concentration of methanol from 0% to 10%. The purified material was evaporated and triturated with methanol, filtered, washed with methanol and acetone, and dried under high vacuum. Total yield was 1.43 g (88%). Found: C, 44.81; H, 5.94; N, 21.83 %; C<sub>24</sub>H<sub>24</sub>O<sub>4</sub>N<sub>10</sub>×7H<sub>2</sub>O requires C, 44.85; H, 5.97; N, 21.79 %; <sup>1</sup>H-NMR (D<sub>2</sub>O/TFA-d) δ 8.52 (s, 2H), 7.80-7.78 (d, J = 8.2 Hz, 2H), 7.42-7.39 (d, J = 8.2 Hz, 2H), 7.08 (s, 2H), 4.66 (s, 4H), 4.54 (s, 4H), 4.15 (t, J = 6.5 Hz, 2H), 2.61 (m, 4H); <sup>13</sup>C NMR (D<sub>2</sub>O/TFA-*d*)  $\delta$  171.54, 145.70, 142.79, 140.52, 136.98, 127.70, 126.38, 121.16, 117.81, 50.72, 46.96, 30.32; MS (ESI<sup>+</sup>) m/z calcd. for [M+H]<sup>+</sup>: 517.27, found: 517.2664, *m/z* calcd. for [M+Na]<sup>+</sup>: 539.25, found: 539.2479; HRMS (ESI<sup>+</sup>) *m/z* calcd. for [M+H]<sup>+</sup>: 517.2055, found: 517.2055, *m/z* calcd. for [M+Na]<sup>+</sup>: 539.1874, found: 539.1872.  $\Delta H$ -[slope] R 2.303 = х х

#### 2.3. Characterization data

2.3.1. NMR





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 8.20-8.18 (d, *J* = 8.2 Hz, 2H), 7.78-7.76 (d, *J* = 8.3 Hz, 4H), 3.29 (3, 2H)



2,9-Diethynyl-1,10-Phenanthroline (PhenDE, Compound 3, <sup>13</sup>C-NMR, CDCl<sub>3</sub>)

<sup>13</sup>C NMR (400 MHz, D2O) δ (ppm): 145.67 (2C), 142.90 (2C), 136.44-136.17 (2C), 128.27 (2C), 127.21 (2C), 126.91 (2C), 83.71-83.53 (2C), 78.71-78.13 (2C)



#### 2.3.1.2 Sodium 4-(2-azidoethyl)benzenesulfonate (AzEBS, Compound 4, <sup>1</sup>HMR, D<sub>2</sub>O)

<sup>1</sup>H NMR (400 MHz,  $D_2O$ )  $\delta$  (ppm): 7.81-7.79 (d, J = 8.4 Hz, 2H), 7.50-7.48 (d, J = 8.3 Hz, 2H), 3.65 (t, J = 6.8, 2H), 3.03 (t, J = 6.8, 2H)



#### Sodium 4-(2-azidoethyl)benzenesulfonate (AzEBS, Compound 4, <sup>13</sup>C-NMR, D<sub>2</sub>O)

<sup>13</sup>C NMR (400 MHz, D2O) δ (ppm): 142.71 (1C), 140.72 (1C), 129.47 (2C), 125.74 (2C), 51.79 (1C), 34.30 (1C)



#### 2.3.1.3. DS-BTrzPhen, Ligand 1, <sup>1</sup>H-NMR, DMSO- $d_6$ @ 80°C

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ (ppm): 9.21 (s, 2H), 8.63-8.61 (d, *J* = 8.4 Hz, 2H), 8.38-8.36 (d, *J* = 8.2 Hz, 2H), 8.01 (s, 2H), 7.55-7.53 (d, *J* = 8.1 Hz, 4H), 7.07 (s, 4H), 4.54 (s, 4H), 3.09 (s, 4H)





#### DS-BTrzPhen, Ligand 1, <sup>13</sup>C-NMR, DMSO- $d_6$ @ 80°C

<sup>13</sup>C NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ (ppm): 149.42 (2C), 146.73 (2C), 146.66 (2C), 144.56 (2C), 137.74 (2C), 137.30 (2C), 128.02 (2C), 127.52 (2C), 126.14 (2C), 125.51 (2C), 124.31 (2C), 120.16 (2C), 50.32 (2C), 34.90 (2C)





#### 2.3.1.4. Benzyl (tert-butoxycarbonyl) homoserinate (NBOB-HS, Compound 5, <sup>1</sup>H-NMR, CDCl<sub>3</sub>)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.35 (m, 5H), 5.40 (s, 1H), 5.18 (m, 2H), 4.53 (m, 1H), 3.69 (m, 2H), 2.77 (s, 1H), 2.16 (m, 1H), 1.63 (m, 1H), 1.44 (s, 9H)



Benzyl (tert-butoxycarbonyl) homoserinate (NBOB-HS, Compound 5, <sup>13</sup>C-NMR, CDCl<sub>3</sub>)

<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 172.84 (1C), 156.58 (1C), 135.33 (1C), 128.77 (2C), 128.65 (1C), 128.41 (2C), 80.64 (1C), 67.43 (1C), 58.38 (1C), 50.77 (1C), 36.29 (1C), 28.38 (3C)



#### 2.3.1.5. Benzyl N-(tert-butoxycarbonyl)-O-tosylhomoserinate (NBOB-HS-Ts, Compound 6, <sup>1</sup>H-NMR, CDCl<sub>3</sub>)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.78-7.75 (d, *J* = 8.3 Hz, 2H), 7.35-7.31 (m, 7H), 5.13 (s, 2H), 5.10 (m, 1H), 4.35 (s, 1H), 4.10 (m, 2H), 2.44 (s, 3H), 2.23 (m, 1H), 212 (m, 1H), 1.40 (s, 9H)



#### Benzyl N-(tert-butoxycarbonyl)-O-tosylhomoserinate (NBOB-HS-Ts, Compound 6, <sup>13</sup>C-NMR, CDCl<sub>3</sub>)

<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 171.56 (1C), 155.27 (1C), 145.05 (1C), 135.21 (1C), 132.81 (1C), 130.00 (2C), 128.77 (2C), 128.66 (1C), 128.55 (2C), 128.15 (2C), 80.31 (1C), 67.68 (1C) 66.35 (1C), 50.73 (1C), 31.62 (1C), 28.36 (3C), 21.78 (1C)



2.3.1.6. Benzyl 4-azido-2-*N*-((tert-butoxycarbonyl)amino)butanoate (NBOB-AHA, Compound 7, <sup>1</sup>H-NMR, CDCl<sub>3</sub>)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.36-7.26 (m, 5H), 5.20-5.18 (m, 3H), 4.44 (s, 1H), 3.37 (t, *J* = 6.7 Hz, 2H), 2.21 (m, 1H), 1.93 (m, 1H), 1.44 (s, 9H)



Benzyl 4-azido-2-((tert-butoxycarbonyl)amino)butanoate (NBOB-AHA, Compound 7, <sup>13</sup>C-NMR, CDCl<sub>3</sub>)

<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 171.96 (1C), 155.40 (1C), 135.26 (1C), 128.78 (2C), 128.70 (1C), 128.55 (2C), 80.33 (1C), 67.54 (1C) 51.54 (1C), 47.81 (1C), 31.92 (1C), 28.39 (3C)



### 2.3.1.7. L-Azidohomoalanine hydrochloride (L-AHA, Compound 8, <sup>1</sup>H-NMR, D<sub>2</sub>O)

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ (ppm): 4.18 (t, *J* = 6.4 Hz, 1H), 3.64 (m, 2H), 2.23 (m, 2H)



L-Azidohomoalanine hydrochloride (L-AHA, Compound **8**, <sup>13</sup>C-NMR, D<sub>2</sub>O)



#### 2.3.1.8. DAA-BTrzPhen, Ligand 2, <sup>1</sup>H-NMR, $D_2O/TFA-d$ @ 50°C

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O/TFA-*d*) δ (ppm): 8.52 (s, 2H), 7.80-7.78 (d, *J* = 8.2 Hz, 2H), 7.42-7.39 (d, *J* = 8.2 Hz, 2H), 7.08 (s, 2H), 4.66 (s, 4H), 4.54 (s, 4H), 4.15 (t, *J* = 6.5 Hz, 2H), 2.61 (m, 4H)



DAA-BTrzPhen, Ligand 2, <sup>13</sup>C-NMR,  $D_2O/TFA-d$  @ 50°C

<sup>13</sup>C NMR (400 MHz, D<sub>2</sub>O/TFA-*d*) δ (ppm): 171.54 (2C), 145.70 (2C), 142.79 (2C), 140.52 (2C), 136.98 (2C), 127.70 (2C), 126.38 (2C), 121.16 (2C), 117.81 (2C), 50.72 (2C), 46.96 (2C), 30.32 (2C)

5.50E+06 [M+H]+ 229.2 4.50E+06 3.50E+06 2.50E+06 1.50E+06 [M+Na]+ 251.1 5.00E+05 210 220 230 240 250 260 270 280 290 m/z <sup>300</sup> 200 -5.00E+05

Mass spectra 2.3.2.1 2,9-Diethynyl-1,10-Phenanthroline (PhenDE, Compound **3**, APCI+)

Method: APCI positive mode, Chemical Formula:  $C_{16}H_9N_2$  as  $[M+H]^+$ , Exact Mass: 229.08, MS (APCI<sup>+</sup>) *m/z* calcd. for  $[M+H]^+$ :229.08 found: 229.2, calcd. for  $[M+Na]^+$ :251.06 found: 251.1



2.3.2.2 Sodium 4-(2-azidoethyl)benzenesulfonate (AzEBS, Compound 4, ESI<sup>-</sup>)

Method: ESI negative mode, Chemical Formula:  $C_8H_8N_3O_3S^2$ , [M-Na]<sup>-</sup>, Exact Mass: 226.08, MS (ESI<sup>-</sup>) m/z calcd. for [M-Na]<sup>-</sup>:226.08 found: 226.0779

2.3.2.3 DS-BTrzPhen, Ligand 1 (ESI-)



Method: ESI negative mode, Chemical Formula:  $C_{32}H_{25}O_6N_8S_2^-$ , [M-Na+H]<sup>-</sup>, Exact Mass: 681.13, MS (ESI<sup>-</sup>) m/z calcd. for [M-Na+H]<sup>-</sup>: 681.14; found: 681.1406



2.3.2.4 Benzyl N-(tert-butoxycarbonyl) homoserinate (NBOB-HS, Compound 5, ESI+)

Method: ESI positive mode, Chemical Formula:  $C_{16}H_{23}O_5N+Na$  or  $[M+Na]^+$ , Exact Mass: 332.15, MS (ESI<sup>+</sup>) *m/z* calcd. for  $C_{16}H_{23}O_5N+Na^+$ : or  $[M+Na]^+$ : 332.21; found: 332.2071.



2.3.2.5 Benzyl N-(tert-butoxycarbonyl)-O-tosylhomoserinate (NBOB-HS-Ts, Compound 6, ESI<sup>+</sup>)

Method: ESI positive mode, Chemical Formula:  $C_{23}H_{29}O_7NS+Na$  or  $[M+Na]^+$ , Exact Mass: 486.16, MS (ESI<sup>+</sup>) *m/z* calcd. for  $[M+Na]^+$ : 486.26; found: 486.2599.


2.3.2.6 Benzyl 4-azido-2-N-((tert-butoxycarbonyl)amino)butanoate (NBOB-AHA, Compound 7, ESI+)

Method: ESI positive mode, Chemical Formula:  $C_{16}H_{22}O_4N_4+Na^+$  or  $[M+Na]^+$ , Exact Mass: 357.26;  $C_{16}H_{22}O_4N_4+K^+$  or  $[M+K]^+$ , Exact Mass: 373.235; MS(ESI<sup>+</sup>) *m/z* calcd. for  $[M+Na]^+$ : 357.26 found: 357.2605, for  $[M+K]^+$ : 373.23 found: 373.2349



2.3.2.7 L-Azidohomoalanine hydrochloride (L-AHA, Compound 8, ESI+)

Method: ESI positive mode, Chemical Formula:  $C_4H_8O_2N_4+H^+$  or  $[M+H]^+$ , Exact Mass: 145.07, MS (ESI<sup>+</sup>) *m/z* calcd. for  $[M+H]^+$ : 145.07 ; found: 145.0968.



Method: ESI positive mode, Chemical Formula:  $C_{24}H_{24}O_4N_{10}+H^+$  or  $[M+H]^+$ , Exact Mass: 517.27 ;  $C_{24}H_{24}O_4N_{10}+Na^+$  or  $[M+Na]^+$ , Exact Mass: 539.25; MS(ESI<sup>+</sup>) *m/z* calcd. for  $[M+H]^+$ : 517.27 found: 517.2664 , *m/z* calcd. for  $[M+Na]^+$ : 539.25 found: 539.2479

2.2.8. High Resolution Mass Spectra





2.2.8.2. DAA-BTrzPhen, Ligand 2, ESI+:

516:500 516:750 517:250 517:750 518:000 518:250 518:750 519:000 519:250 519:500 519:750 520:000 520:250 mzMethod: ESI positive mode, Chemical Formula: C<sub>24</sub>H<sub>24</sub>O<sub>4</sub>N<sub>10</sub>+H<sup>+</sup> or [M+H]<sup>+</sup>, Exact Mass: 517.27; HRMS(ESI<sup>+</sup>) m/z calcd. for [M+H]<sup>+</sup>: 517.2055, found: 517.2055.



Method: ESI positive mode, Chemical Formula:  $C_{24}H_{24}O_4N_{10}+Na^+$  or  $[M+Na]^+$ , Exact Mass: 517.27; HRMS (ESI<sup>+</sup>) *m/z* calcd. for  $[M+Na]^+$ : 539.1874, found: 539.1872.

2.2.4. FTIR spectra2.3.4.1 FTIR spectrum of Sodium 4-(2-bromoethyl)benzenesulfonate (AzEBS, compound 4)



FT-IR (KBr disc): *v*<sub>max</sub> 3413(m), 2137(s), 1236(s), 1184(s), 1134(s), 1051(s), 837(m), 700(s).

2.3.4.2 IR spectrum of L-Azidohomoalanine hydrochloride (8)



FT-IR (KBr disc): *v*<sub>max</sub> 3457 (s), 3124 (m), 2151 (m), 2109 (s), 1741 (s), 1502 (m), 1401 (s), 1369 (m), 1295 (m), 1215 (s).

### 2.3.5. UV-Vis spectra







2.3.5.1. UV-Vis spectrum of Ligand 2 (DAA-BTrzPhen), aqueous nitric acid solution ([HNO<sub>3</sub>] = 0.0286 M) [ligand] =  $2.0 \times 10^{-5}$  M, (I = 0.01 M Me<sub>4</sub>NNO<sub>3</sub>)

### 3. Solvent Extraction Studies

# 3.1. General information and procedures for the solvent extraction studies

All inorganic chemicals used for solvent extraction studies (NaOH, HNO<sub>3</sub> and NaNO<sub>3</sub>) were of spectroscopic grade. Deionised water used was of low conductivity (18.2 M $\Omega$ ). Organic chemicals were purchased from Macklin, TCI, and TODGA from Qingdao Beitwall Technology Co., Ltd. <sup>241</sup>Am-241 tracer used was obtained from Institute of Nuclear and New Energy Technology (INET) and had radio-concentration of 10<sup>7</sup> cpm/ml. Radioactive europium tracer contained <sup>152</sup>Eu and <sup>154</sup>Eu was obtained from China Institute of Atomic Energy (CIAE) and had total radio-concentration of 1.6×10<sup>7</sup> cpm/ml.

Bulk ligands 1 and 2 were tested by elemental analysis and % of the ligand in the bulk material was estimated taking into account content of water. Bulk ligand 1 powder was found to be 89.7 % pure, while the rest was water. Bulk ligand 2 powder was found to be 80.2 % pure, the rest was water.

All aqueous phases contained either ligand 1 or 2, 0.5 M of NaNO<sub>3</sub>,  $^{241}$ Am and  $^{152}$ Eu/<sup>154</sup>Eu tracers and variable concentrations of HNO<sub>3</sub>.

All the extraction experiments were carried out in a 4 mL polypropylene screw cap vials with rubber "O" ring to prevent leakage/contamination. Stock solutions were mix and handled with precise syringes or high quality calibrated automatic pipettes.

Shaker instrument used was VX-IV vortex oscillator. Centrifugation instrument used was BY-400C centrifuge.

Activities of <sup>241</sup>Am and <sup>152/154</sup>Eu were counted using Quantulus 1220 (PerkinElmer) liquid scintillation counter and the LSC cocktail used was Hisafe 3.

# 3.1.1. Stock solutions:

- The organic phase for all the solvent extraction experiment was 0.2 M tetraoctyl diglycolamide (TODGA) in 30 ml of kerosene/1-octanol (95:5) solution.
- Stock solution of the ligand 1 was prepared by dissolving 162 mg of the ligand powder in exactly 5 ml of purified water. Obtained stock solution was 40 mM.
- Stock solution of the ligand **2** was prepared by dissolving by dissolving 129 mg of the ligand powder in 6.04 ml of 0.68 M aqueous solution of HNO<sub>3</sub>. Obtained stock solution was 33.085 mM. The stock solution of DAA-BTrzPhen used for thermodynamics test was 40 mM (Table 9).
- Stock solution of <sup>241</sup>Am(NO<sub>3</sub>)<sub>3</sub> contained 0.01 M of nitric acid.
- Stock solution of  $^{152/154}$ Eu(NO<sub>3</sub>)<sub>3</sub> contained 0.01 M of nitric acid.
- Stock solution of HNO<sub>3</sub> was 1 M
- Stock solution of NaOH were 0.01 M, 1 M or 2 M
- Stock solution of NaNO<sub>3</sub> was 4 M.

# 3.2. Protocols and tables

Try types of studies were performed:

1. Solvent extraction studies of acidity to determine influence of nitric acid concentration on

distribution ratios and  $SF_{Eu/Am.}$  For the ligand 1 (DS-BTrzPhen) acidity studies were performed at the acidities of 0, 0.001, 0.005, 0.01, 0.05 and 0.1 M of nitric acid, while for the ligand 2 (DAA-BTrzPhen) studies were performed at 0.005, 0.01, 0.05, 0.1, 0.25 and 0.5 M. In both cases standard concentration of the ligand was 10 mM.

- 2. Kinetics solvent extraction studies to determine kinetics of extraction process. For the kinetics study in the cases of both ligands aqueous phase contained constant acidity of 0.05 M nitric acid and constant concentration of ligands (10 mM) while samples were taken at intervals of 1, 2, 5, 10, 15 and 30 minutes.
- 3. Ligand concentration solvent extraction studies to determine influence of ligand concentration on distribution ratios and  $SF_{Eu/Am}$ . For the ligand concentration study, DS-BTrzPhen was tested at concentrations of 1, 2.5, 5, 10, 15, 20 and 25 mM, while DAA-BTrzPhen at 5, 10, 15, 20, 25 mM. Standard acidity was 0.05 M of nitric acid, while ligand 1 was additionally tested at concentrations of 1, 2.5 and 5 at 0.01 M nitric acid.
- 4. Thermodynamic solvent extraction studies to determine influence of temperature as well as thermodynamic parameters, namely ΔH. Both ligands are tested at different temperatures: 15, 20, 25, 30, 35 and 40°C. Standard acidity was 0.05 M of nitric acid, while the standard concentrations of the ligands were 10 mM.

Aqueous and organic phases, each one 1 mL, were mixed in a PP vial, shaken by using a vortex oscillator (standard of 15 minutes), then centrifuged (4000 rpm for 2 minutes) to completely separate the two phases. Samples of aqueous and organic phase were then taken, and activities counted (in cmp) using LSC in different channels, which can differentiate<sup>4</sup> alpha emission from <sup>241</sup>Am and beta emission from <sup>152</sup>Eu/<sup>154</sup>Eu. Each of the sample was measured in triplicate for at least 10 min to ensure the accuracy of the data. Ratio of counts in two phases are then interpreted as extraction parameters  $D_{Am}$  and  $D_{Eu}$  respectively, while  $SF_{Eu/Am}$  was calculated as  $D_{Eu}/D_{Am}$  ratio.

### 3.2.1. Protocol tables for ligand 1 (DS-BTrzPhen)

The protocols for the preparation of aqueous phases for the ligand **1** are shown in the tables below:

|    |              |             | Components of the aqueous phases for each experiment |                        |                                    |                       |                                                              |                                                              |               |  |  |  |  |  |
|----|--------------|-------------|------------------------------------------------------|------------------------|------------------------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------|--|--|--|--|--|
|    | [HNO₃]<br>/M | H₂O /<br>μL | NaOH<br>(0.01M)<br>/ μL                              | NaNO₃<br>(4 M) /<br>μL | <u>Ligand 1</u><br>(40 mM)<br>/ μL | HNO₃<br>(1 M) /<br>μL | Am <sup>3+</sup> (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>μL | Eu <sup>3+</sup> (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>μL | Total<br>/ μL |  |  |  |  |  |
| L1 | 0.000        | 617         | 4                                                    | 125                    | 250                                | 0                     | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |
| L2 | 0.001        | 620         | 0                                                    | 125                    | 250                                | 1                     | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |
| L3 | 0.005        | 616         | 0                                                    | 125                    | 250                                | 5                     | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |
| L4 | 0.010        | 611         | 0                                                    | 125                    | 250                                | 10                    | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |
| L5 | 0.050        | 571         | 0                                                    | 125                    | 250                                | 50                    | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |
| L6 | 0.100        | 521         | 0                                                    | 125                    | 250                                | 100                   | 2                                                            | 2                                                            | 1000          |  |  |  |  |  |

**Table 1.** Protocol for the preparation of the aqueous phases for solvent extraction studies of acidity for the Ligand 1.

|     |               |                            | Components of the aqueous phases for each experiment |                       |                        |                                          |                                                              |                                                              |               |  |  |  |  |
|-----|---------------|----------------------------|------------------------------------------------------|-----------------------|------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------|--|--|--|--|
|     | Time<br>/ min | [HNO <sub>3</sub> ]<br>/ M | H <sub>2</sub> Ο / μL                                | HNO₃<br>(1 M) /<br>μL | NaNO₃<br>(4 M) /<br>μL | <mark>Ligand 1</mark><br>(40 mM) /<br>μL | Am <sup>3+</sup> (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>μL | Eu <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Total<br>/ µL |  |  |  |  |
| L7  | 1             | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |
| L8  | 2             | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |
| L9  | 5             | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |
| L10 | 10            | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |
| L11 | 15            | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |
| L12 | 30            | 0.050                      | 571                                                  | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |  |  |  |  |

**Table 2.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of kinetics for the Ligand 1.

|     |                 | Con           | nponents    | of the aq             | ueous ph               | ases for ea                              | ch experim                                                   | ent                                                          |               |
|-----|-----------------|---------------|-------------|-----------------------|------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------|
|     | [Ligand]<br>/mM | [HNO₃]<br>/ M | H₂O /<br>μL | HNO₃<br>(1 M) /<br>μL | NaNO₃<br>(4 M) /<br>μL | <mark>Ligand 1</mark><br>(40 mM) /<br>μL | Am <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Eu <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Total<br>/ μL |
| L13 | 5               | 0.050         | 696         | 50                    | 125                    | 125                                      | 2                                                            | 2                                                            | 1000          |
| L14 | 10              | 0.050         | 571         | 50                    | 125                    | 250                                      | 2                                                            | 2                                                            | 1000          |
| L15 | 15              | 0.050         | 446         | 50                    | 125                    | 375                                      | 2                                                            | 2                                                            | 1000          |
| L16 | 20              | 0.050         | 321         | 50                    | 125                    | 500                                      | 2                                                            | 2                                                            | 1000          |
| L17 | 25              | 0.050         | 196         | 50                    | 125                    | 625                                      | 2                                                            | 2                                                            | 1000          |

**Table 3.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of ligand concentration for the Ligand 1.

|     |                 | Com                        | ponents                  | of the aq             | ueous pha              | ases for each                            | experimer                                        | nt                                               |               |
|-----|-----------------|----------------------------|--------------------------|-----------------------|------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|
|     | [Ligand]<br>/mM | [HNO <sub>3</sub> ] /<br>M | Η <sub>2</sub> Ο /<br>μL | HNO₃<br>(1 M) /<br>µL | NaNO₃<br>(4 M) /<br>μL | <mark>Ligand 1</mark><br>(40 mM) /<br>μL | Am³⁺ (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>µL | Eu³⁺ (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>µL | Total<br>/ μL |
| L18 | 5               | 0.010                      | 736                      | 10                    | 125                    | 125                                      | 2                                                | 2                                                | 1000          |
| L19 | 5               | 0.050                      | 696                      | 50                    | 125                    | 125                                      | 2                                                | 2                                                | 1000          |
| L20 | 2.5             | 0.010                      | 799                      | 10                    | 125                    | 62                                       | 2                                                | 2                                                | 1000          |
| L21 | 2.5             | 0.050                      | 759                      | 50                    | 125                    | 62                                       | 2                                                | 2                                                | 1000          |
| L22 | 1               | 0.010                      | 834                      | 10                    | 125                    | 25                                       | 3                                                | 3                                                | 1000          |
| L23 | 1               | 0.050                      | 796                      | 50                    | 125                    | 25                                       | 2                                                | 2                                                | 1000          |

**Table 4.** Additional protocol for the preparation of the aqueous phases for additional solvent extraction studies of acidity and ligand concentration for the Ligand 1.

|     |                      |                          | Components of the aqueous phases for each experiment |                     |                              |                                              |                                                           |               |  |  |  |  |
|-----|----------------------|--------------------------|------------------------------------------------------|---------------------|------------------------------|----------------------------------------------|-----------------------------------------------------------|---------------|--|--|--|--|
|     | Tempe-<br>rature /°C | H <sub>2</sub> O /<br>µL | HNO₃<br>(1 M) /<br>µL                                | NaNO₃ (4<br>M) / µL | Ligand<br>stock sol.<br>/ µL | Am <sup>3+</sup> (in<br>0.01 M<br>HNO₃) / μL | Eu <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) / μL | Total /<br>μL |  |  |  |  |
| L24 | 15                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |
| L25 | 20                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |
| L26 | 25                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |
| L27 | 30                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |
| L28 | 35                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |
| L29 | 40                   | 571                      | 50                                                   | 125                 | 250                          | 2                                            | 2                                                         | 1000          |  |  |  |  |

**Table 5.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of variable temperature (thermodynamic study) for the Ligand **1**.

# 3.2.2. Protocol tables for ligand 2 (DAA-BTrzPhen)

The protocols for the preparation of aqueous phases for the ligand **2** are shown in the tables below:

|    |                          |                          | Con                  | nponents of            | f the aqueou                                 | s phases fo           | r each expei                        | riment                                                       |               |
|----|--------------------------|--------------------------|----------------------|------------------------|----------------------------------------------|-----------------------|-------------------------------------|--------------------------------------------------------------|---------------|
|    | [HNO₃]<br>/ M<br>1 0.005 | Η <sub>2</sub> Ο<br>/ μL | NaOH<br>(1M) /<br>μL | NaNO₃<br>(4 M) /<br>μL | <mark>Ligand 2</mark><br>(33.085<br>mM) / μL | HNO₃<br>(1 M) /<br>μL | Am³⁺ (in<br>0.01 M<br>HNO₃) /<br>μL | Eu <sup>3+</sup> (in<br>0.01 M<br>HNO <sub>3</sub> ) /<br>μL | Total<br>/ μL |
| L1 | 0.005                    | 417                      | 203                  | 74                     | 302                                          | 0                     | 2                                   | 2                                                            | 1000          |
| L2 | 0.010                    | 421                      | 198                  | 75                     | 302                                          | 0                     | 2                                   | 2                                                            | 1000          |
| L3 | 0.050                    | 451                      | 158                  | 85                     | 302                                          | 0                     | 2                                   | 2                                                            | 1000          |
| L4 | 0.100                    | 488                      | 108                  | 98                     | 302                                          | 0                     | 2                                   | 2                                                            | 1000          |
| L5 | 0.250                    | 527                      |                      | 125                    | 302                                          | 42                    | 2                                   | 2                                                            | 1000          |
| L6 | 0.500                    | 277                      |                      | 125                    | 302                                          | 292                   | 2                                   | 2                                                            | 1000          |

**Table 6.** Protocol for the preparation of the aqueous phases for solvent extraction studies of acidity for the Ligand **2**.

|     |               |                            | Compo    | nents of t            | he aqueo               | ous phases for                         | r each experi                                             | ment                                                         |               |
|-----|---------------|----------------------------|----------|-----------------------|------------------------|----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|---------------|
|     | Time<br>/ min | [HNO <sub>3</sub> ]<br>/ M | H₂O / μL | NaOH<br>(1 M) /<br>µL | NaNO₃<br>(4 M) /<br>μL | <u>Ligand 2</u><br>(33.085<br>mM) / μL | Am <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) / μL | Eu <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Total /<br>µL |
| L7  | 1             | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |
| L8  | 2             | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |
| L9  | 5             | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |
| L10 | 10            | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |
| L11 | 15            | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |
| L12 | 30            | 0.050                      | 451      | 158                   | 85                     | 302                                    | 2                                                         | 2                                                            | 1000          |

**Table 7.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of kinetics for the Ligand **2**.

|     |                 | C                          | ompone                   | nts of the         | aqueous                            | phases for each                        | ch experim                                                   | ent                                                          |               |
|-----|-----------------|----------------------------|--------------------------|--------------------|------------------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------|
|     | [Ligand]<br>/mM | [HNO <sub>3</sub> ]<br>/ M | Η <sub>2</sub> Ο /<br>μL | NaOH (2<br>Μ) / μL | NaNO <sub>3</sub><br>(4 M) /<br>μL | <u>Ligand 2</u><br>(33.085 mM) /<br>μL | Am <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Eu <sup>3+</sup> (in<br>0.01 Μ<br>HNO <sub>3</sub> ) /<br>μL | Total /<br>μL |
| L13 | 5.0             | 0.05                       | 706                      | 27                 | 112                                | 151                                    | 2                                                            | 2                                                            | 1000          |
| L14 | 10.0            | 0.05                       | 529                      | 79                 | 86                                 | 302                                    | 2                                                            | 2                                                            | 1000          |
| L15 | 15.0            | 0.05                       | 352                      | 131                | 60                                 | 453                                    | 2                                                            | 2                                                            | 1000          |
| L16 | 20.0            | 0.05                       | 176                      | 183                | 34                                 | 603                                    | 2                                                            | 2                                                            | 1000          |
| L17 | 25.0            | 0.05                       | 0                        | 236                | 5                                  | 755                                    | 2                                                            | 2                                                            | 1000          |

**Table 8.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of ligand concentration for the Ligand **2**.

|     |                          |                          | Components of the aqueous phases for each experiment |                        |                                                  |                                  |                                                        |               |  |  |  |  |  |
|-----|--------------------------|--------------------------|------------------------------------------------------|------------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------------|---------------|--|--|--|--|--|
|     | Tempe-<br>rature /<br>°C | Η <sub>2</sub> Ο /<br>μL | NaOH<br>(1 M) /<br>μL                                | NaNO₃<br>(4 M) /<br>μL | Ligand<br>stock sol.<br>( <b>40 mM</b> ) /<br>µL | Am³⁺ (in 0.01<br>M HNO₃) /<br>µL | Eu <sup>3+</sup> (in 0.01<br>Μ ΗΝΟ <sub>3</sub> ) / μL | Total /<br>μL |  |  |  |  |  |
| L18 | 15                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |
| L19 | 20                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |
| L20 | 25                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |
| L21 | 30                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |
| L22 | 35                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |
| L23 | 40                       | 546                      | 100                                                  | 100                    | 250                                              | 2                                | 2                                                      | 1000          |  |  |  |  |  |

**Table 9.** Protocol for the preparation of the aqueous phases for the solvent extraction studies of variable temperature (thermodynamic study) for the Ligand **2**.

#### 3.3. Results

#### 3.3.1. Tables:

#### 3.3.1.1. Results for ligand 1 (DS-BTrzPhen)

|     |                       |       | Effect of HNC           | O₃ concentratio         | n               |                 |                     |
|-----|-----------------------|-------|-------------------------|-------------------------|-----------------|-----------------|---------------------|
|     | [HNO <sub>3</sub> ]/M | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |
| 11  | 0.000                 | A*    | 4119.592                | 2827.143                | 0.0163          | 0.2800          | 17 75               |
|     | 0.000                 | O*    | 67.089                  | 817.064                 | 0.0105          | 0.2090          | 17.75               |
| 12  | 0.001                 | А     | 3980.393                | 3373.474                | 0.0004          | 0.0375          | 01 90               |
| LZ  | 0.001                 | 0     | 1.626                   | 126.630                 | 0.0004          | 0.0375          | 91.09               |
| 12  | 0.005                 | A     | 4061.739                | 3643.068                | 0.0002          | 0.0135          | 90.04               |
| LJ  | 0.005                 | 0     | 0.610                   | 49.180                  | 0.0002          | 0.0135          | 09.94               |
| 1.4 | 0.010                 | A     | 3526.623                | 3189.853                | 0.0005          | 0.0659          | 142.62              |
| L4  | 0.010                 | 0     | 1.626                   | 209.763                 | 0.0005          | 0.0056          | 142.02              |
| 1.5 | 0.050                 | A     | 3232.224                | 177.727                 | 0.0000          | 40.0007         | 000.00              |
| L5  | 0.050                 | 0     | 205.655                 | 3376.932                | 0.0636          | 19.0007         | 298.63              |
| 16  | .6 0.100 -            | A     | 2572.303                | 63.242                  | 0 4224          | E2 E669         | 122.00              |
| LG  |                       | 0     | 1111.382                | 3387.651                | 0.4321          | 55.5666         | 123.90              |

**Table 10:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 0, 1, 5, 10, 50 and 100 mM of nitric acids and 10 mM of ligand **1**. \* A = aqueous phase, O = organic phase.

|       | Effect of contact time                   |       |                         |                         |                 |                 |                     |  |  |  |  |  |  |
|-------|------------------------------------------|-------|-------------------------|-------------------------|-----------------|-----------------|---------------------|--|--|--|--|--|--|
|       | Time/min                                 | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |  |  |  |  |  |  |
| 17    | 1                                        | A*    | 3326.735                | 962.408                 | 0.0257          | 2 2042          | 95.96               |  |  |  |  |  |  |
| L/    | L. L | O*    | 85.412                  | 2121.475                | 0.0257          | 2.2043          | 05.00               |  |  |  |  |  |  |
| 1.9   | 2                                        | A     | 3184.570                | 618.081                 | 0.0363          | 1 1061          | 122.05              |  |  |  |  |  |  |
| LO    | 2                                        | 0     | 115.525                 | 2779.119                | 0.0303          | 4.4904          | 125.55              |  |  |  |  |  |  |
| 10    | o                                        | A     | 3259.473                | 295.669                 | 0.0414          | 10 7222         | 250.05              |  |  |  |  |  |  |
| L9    | 5                                        | 0     | 135.051                 | 3173.492                | 0.0414          | 10.7333         | 259.05              |  |  |  |  |  |  |
| 1.10  | 10                                       | A     | 3280.640                | 188.110                 | 0.0575          | 17 1 1 10       | 207.02              |  |  |  |  |  |  |
| LIU   | 10                                       | 0     | 188.759                 | 3224.558                | 0.0575          | 17.1419         | 297.95              |  |  |  |  |  |  |
| 1 1 1 | 45                                       | A     | 3085.545                | 152.126                 | 0.0650          | 21 5710         | 224 07              |  |  |  |  |  |  |
| L ! ! | 15                                       | 0     | 200.563                 | 3281.622                | 0.0050          | 21.5710         | 331.07              |  |  |  |  |  |  |
| 1 1 2 | 20                                       | A     | 3152.308                | 160.442                 | 0.0960          | 22 2407         | 274 62              |  |  |  |  |  |  |
| L12   | 30 -                                     | 0     | 270.980                 | 3746.109                | 0.000           | 23.3407         | 2/1.02              |  |  |  |  |  |  |

**Table 11:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 1, 2, 5, 10, 15 and 30 minutes of contact time, 50 mM of nitric acids and 10 mM of ligand 1. \* A = aqueous phase, O = organic phase.

|       |                    | l     | Effect of ligand o      | oncentration            |                 |                 |                     |  |  |
|-------|--------------------|-------|-------------------------|-------------------------|-----------------|-----------------|---------------------|--|--|
|       | [Ligand 1] /<br>mM | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |  |  |
| 1.12  | E                  | A*    | 3423.575                | 131.160                 | 0.000           | 26 695          | 260.2               |  |  |
| LIS   | 5                  | O*    | 339.300                 | 3500.000                | 0.099           | 20.005          | 209.3               |  |  |
| 1.1.4 | 10                 | A     | 3096.892                | 136.849                 | 0.079           | 26.049          | 225.0               |  |  |
| L14   | 10                 | 0     | 240.667                 | 3564.642                | 0.076           | 20.040          | 335.2               |  |  |
| 1.45  | 45                 | A     | 3098.112                | 175.280                 | 0.052           | 19.069          | 264.4               |  |  |
| LID   | 15                 | 0     | 162.734                 | 3324.654                | 0.055           | 10.900          | 301.1               |  |  |
| 1.16  | 20                 | A     | 2945.299                | 254.796                 | 0.027           | 12 510          | 264.2               |  |  |
| LIO   | 20                 | 0     | 110.245                 | 3444.437                | 0.037           | 13.510          | 301.2               |  |  |
| L17   |                    | A     | 2956.690                | 375.153                 | 0.000           | 7 000           |                     |  |  |
|       | 25                 | 0     | 67.528                  | 2961.253                | 0.023           | 7.893           | 345.6               |  |  |

**Table 12**: Effect of ligand 1 concentration at the constant 0.05 M acidity, ligand 1 concentration rangingfrom 5 mM to 25 mM. \* A = aqueous phase, O = organic phase.

|       | Effect of ligand and HNO3 concentration |                       |         |                         |                         |                 |                 |                     |  |  |  |  |
|-------|-----------------------------------------|-----------------------|---------|-------------------------|-------------------------|-----------------|-----------------|---------------------|--|--|--|--|
|       | [Ligand 1]<br>/ mM                      | [HNO <sub>3</sub> ]/M | phase   | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |  |  |  |  |
| 1 18  | 5                                       | 0.010                 | A*      | 3621.658                | 2290.278                | 0 0023          | 0 5211          | 225 76              |  |  |  |  |
| L10   | 5                                       | 0.010                 | O*      | 8.359                   | 1193.415                | 0.0025          | 0.5211          | 225.70              |  |  |  |  |
| 1 10  | 5                                       | 0.050                 | A       | 3322.093                | 156.840                 | 0.0600          | 21.8570         | 264 16              |  |  |  |  |
| LIS   | 5                                       | 0.050                 | 0       | 199.395                 | 3428.061                | 0.0000          |                 | 304.10              |  |  |  |  |
| 1.20  | 2.5                                     | 0.010                 | A       | 3691.586                | 1744.904                | 0.0020          | 1.0196          | 241.95              |  |  |  |  |
| L20   | 2.5                                     | 0.010                 | 0       | 11.010                  | 1779.020                | 0.0030          |                 | 541.05              |  |  |  |  |
| 1.21  | 2.5                                     | 0.050                 | A       | 3930.173                | 166.749                 | 0.0667          | 10 0120         | 209 47              |  |  |  |  |
| LZI   | 2.5                                     | 0.050                 | 0       | 262.218                 | 3320.607                | 0.0007          | 19.9138         | 290.47              |  |  |  |  |
| 1.22  | 4                                       | 0.010                 | A       | 4336.360                | 1417.976                | 0.0042          | 1 5 1 2 1       | 269 74              |  |  |  |  |
|       | 22   1                                  | 0.010                 | 0       | 18.148                  | 2188.112                | 0.0042          | 1.5431          | 300.71              |  |  |  |  |
| 1.00  |                                         | 0.050                 | A       | 3637.998                | 140.735                 | 0.0025          | 05 0050         | 200 64              |  |  |  |  |
| L23 1 | 0.050                                   | 0                     | 303.845 | 3522.014                | 0.0835                  | 25.0259         | 299.64          |                     |  |  |  |  |

**Table 13**: Additional experiments on effect of ligand 1 concentration at 10 or 50 mM of acidity, ligand1 concentration ranging from 1 mM to 5 mM. \* A = aqueous phase, O = organic phase.

|     | Effect of temperature |        |                               |        |                            |                            |                 |                       |                 |                       |                     |  |
|-----|-----------------------|--------|-------------------------------|--------|----------------------------|----------------------------|-----------------|-----------------------|-----------------|-----------------------|---------------------|--|
|     | T/°C                  | T/K    | 1000/T<br>[mK <sup>-1</sup> ] | phase  | Am<br>counting<br>rate/cpm | Eu<br>counting<br>rate/cpm | D <sub>Am</sub> | log(D <sub>Am</sub> ) | D <sub>Eu</sub> | log(D <sub>Eu</sub> ) | SF <sub>Eu/Am</sub> |  |
| L24 | 15                    | 288.15 | 3.47                          | A      | 2518.152<br>944 244        | 112.763<br>3234.004        | 0.3750          | -0.4260               | 28.6797         | 1.4576                | 76.48               |  |
| L25 | 20                    | 293.15 | 3.41                          | A<br>O | 2936.855                   | 158.661<br>3370.876        | 0.0697          | -1.1567               | 21.2458         | 1.3273                | 304.74              |  |
| L26 | 25                    | 298.15 | 3.35                          | A<br>O | 3158.405<br>143.255        | 261.728<br>3334.648        | 0.0454          | -1.3434               | 12.7409         | 1.1052                | 280.91              |  |
| L27 | 30                    | 303.15 | 3.30                          | A<br>O | 3321.170<br>70.136         | 421.068<br>3032.686        | 0.0211          | -1.6754               | 7.2024          | 0.8575                | 341.06              |  |
| L28 | 35                    | 308.15 | 3.25                          | A<br>O | 3423.383<br>30.368         | 757.784<br>2464.502        | 0.0089          | -2.0520               | 3.2523          | 0.5122                | 366.62              |  |
| L29 | 40                    | 313.15 | 3.19                          | A<br>O | 3676.581<br>12.471         | 1441.956<br>1824.543       | 0.0034          | -2.4696               | 1.2653          | 0.1022                | 373.04              |  |

**Table 15**: Effect of temperature for the ligand 1 (10 mM) at 50 mM of acidity, \* A = aqueous phase, O = organic phase.

| Effect of HNO <sub>3</sub> concentration |                       |       |                         |                         |                 |          |                     |  |  |
|------------------------------------------|-----------------------|-------|-------------------------|-------------------------|-----------------|----------|---------------------|--|--|
|                                          | [HNO <sub>3</sub> ]/M | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | $D_{Eu}$ | SF <sub>Eu/Am</sub> |  |  |
| 11                                       | 0.005                 | A*    | 2282.762                | 206.653                 | 0 2222          | 13.5072  | 60 78               |  |  |
|                                          | 0.000                 | O*    | 507.278                 | 2791.300                | U.LLLL          |          | 00.10               |  |  |
| 12                                       | L2 0.010              | A     | 1289.743                | 174.812                 | 0.2404          | 15 1238  | 62 91               |  |  |
| LZ                                       |                       | 0     | 310.058                 | 2643.811                |                 | 15.1250  | 02.01               |  |  |
| 13                                       | `0.050                | A     | 3176.204                | 193.093                 | 0.2178          | 18.3895  | 94 42               |  |  |
| LJ                                       |                       | 0     | 691.823                 | 3550.887                | 0.2170          |          | 04.45               |  |  |
| 1.4                                      | 0.400                 | A     | 2815.226                | 123.519                 | 0.4667          | 20.4590  | 62.42               |  |  |
| L4                                       | 0.100                 | 0     | 1313.777                | 3638.732                | 0.4007          | 29.4569  | 03.13               |  |  |
| 1.5                                      | 0.250                 | A     | 1167.241                | 92.230                  | 2 2012          | 27 0290  | 16 EE               |  |  |
| L5                                       | 0.250                 | 0     | 2674.401                | 3498.108                | 2.2912          | 37.9280  | 10.55               |  |  |
|                                          |                       | A     | 315.949                 | 65.004                  | 40.0000         | 53.5591  |                     |  |  |
| L6                                       | 0.500                 | 0     | 4110 149                | 3481 544                | 13.0089         |          | 4.12                |  |  |

# 3.3.1.2. Results for ligand 2 (DS-BTrzPhen)

**Table 16:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 5, 10, 50, 100, 250 and 500 mM of nitric acids and 10 mM of ligand **2**. \* A = aqueous phase, O = organic phase.

|       | Effect of contact time |       |                         |                         |                 |                 |                     |  |  |  |  |
|-------|------------------------|-------|-------------------------|-------------------------|-----------------|-----------------|---------------------|--|--|--|--|
|       | Time / min             | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |  |  |  |  |
| 17    | 1.00                   | A*    | 2558.17                 | 154.34                  | 0.21            | 10 7/           | 92.18               |  |  |  |  |
|       | 1.00                   | O*    | 547.81                  | 3046.50                 | 0.21            | 19.74           | 52.10               |  |  |  |  |
| 1.0   | 8 2.00                 | A     | 2793.71                 | 166.95                  | 0.24            | 19.21           | 81.39               |  |  |  |  |
| LO    |                        | 0     | 659.43                  | 3207.37                 | 0.24            |                 |                     |  |  |  |  |
| 10    | 5.00                   | A     | 2799.26                 | 145.26                  | 0.22            | 21.80           | 02.00               |  |  |  |  |
| L9    | 5.00                   | 0     | 649.34                  | 3167.00                 | 0.23            |                 | 33.33               |  |  |  |  |
| 1.10  | 10.00                  | A     | 2821.69                 | 150.82                  | 0.22            | 04.47           | 04 76               |  |  |  |  |
| LIU   | 10.00                  | 0     | 639.25                  | 3237.64                 | 0.23            | 21.47           | 94.76               |  |  |  |  |
| 1 1 1 | 45.00                  | A     | 2831.24                 | 152.57                  | 0.02            | 20.06           | 90.24               |  |  |  |  |
| LII   | 15.00                  | 0     | 664.24                  | 3198.11                 | 0.23            | 20.96           | 09.34               |  |  |  |  |
| 1.10  | 20.00                  | A     | 2889.04                 | 163.17                  | 0.01            | 19.57           | 02.49               |  |  |  |  |
| L12   | 30.00                  | 0     | 611.42                  | 3193.48                 | 0.21            |                 | 92.48               |  |  |  |  |

**Table 17:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 1, 2, 5, 10, 15 and 30 minutes of contact time, constant 50 mM of nitric acids and 10 mM of ligand **2**. \* A = aqueous phase, O = organic phase.

|       | Effect of ligand concentration |                        |                         |                         |                 |                 |                     |  |  |  |  |
|-------|--------------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------|---------------------|--|--|--|--|
|       | [Ligand 2] /<br>mM             | phase                  | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | D <sub>Eu</sub> | SF <sub>Eu/Am</sub> |  |  |  |  |
| 1 12  | E                              | A                      | 2450.677                | 100.361                 | 0 2024          | 31.5610         | 80.44               |  |  |  |  |
| LIJ   | 5                              | 0                      | 961.554                 | 3167.508                | 0.3924          |                 | 00.44               |  |  |  |  |
| 1 1 1 | L14 <b>10</b>                  | A                      | 2739.005                | 160.040                 | 0 2202          | 19.9433         | 00 55               |  |  |  |  |
| L14   |                                | 0                      | 603.229                 | 3191.726                | 0.2202          |                 | 90.55               |  |  |  |  |
| 1.15  | 45                             | A                      | 2831.997                | 164.535                 | 0.1065          | 10 0 100        | 05.00               |  |  |  |  |
| LIS   | 15                             | O 556.497 3101.152 0.1 |                         | 0.1905                  | 10.0400         | 95.92           |                     |  |  |  |  |
| 1.16  | 20                             | A                      | 2931.346                | 173.393                 | 0.1614          | 17.8989         | 440.90              |  |  |  |  |
| LIO   | 20                             | 0                      | 473.135                 | 3103.533                | 0.1014          |                 | 110.09              |  |  |  |  |
| 1 1 7 | 25                             | A                      | 3028.293                | 196.984                 | 0 1 1 9 7       | 15.7355         | 420 64              |  |  |  |  |
| L17   | 25                             | 0                      | 359.598                 | 3099.638                | 0.1107          |                 | 132.51              |  |  |  |  |

**Table 18**: Effect of ligand **2** concentration at the constant 0.05 M acidity, ligand **2** concentration ranging from 5 mM to 25 mM. \* A = aqueous phase, O = organic phase.

|      | Effect of temperature |           |                               |       |                         |                         |                 |                       |                 |                       |                     |  |
|------|-----------------------|-----------|-------------------------------|-------|-------------------------|-------------------------|-----------------|-----------------------|-----------------|-----------------------|---------------------|--|
|      | T/°C                  | т/к       | 1000/T<br>[mK <sup>-1</sup> ] | phase | Am counting<br>rate/cpm | Eu counting<br>rate/cpm | D <sub>Am</sub> | log(D <sub>Am</sub> ) | D <sub>Eu</sub> | log(D <sub>Eu</sub> ) | SF <sub>Eu/Am</sub> |  |
| 118  | 15                    | 288.15    | 3.47                          | A     | 2171.598                | 97.545                  | 0 5489          | -0.2605               | 32 1337         | 1 5070                | 58.55               |  |
|      | - 15                  | 200.15    | 5.47                          | 0     | 1191.915                | 3134.492                | 0.5405          |                       | 02.12007        | 1.5070                |                     |  |
| 110  | 20                    | 202.15    | 5 3.41                        | A     | 2823.226                | 143.319                 | 0.2128          | -0.6720               | 20.8400         | 1 21 90               | 07.02               |  |
| L19  | 20                    | 20 293.15 |                               | 0     | 600.861                 | 2986.776                |                 |                       | 20.8400         | 1.5165                | 57.52               |  |
| 120  | 25                    | 25 298.15 | 3.35                          | Α     | 2869.453                | 210.793                 | 0.1417          | -0.8487               | 14.9289         | 1.1740                | 105.37              |  |
|      | 25                    |           |                               | 0     | 406.528                 | 3146.891                |                 |                       |                 |                       |                     |  |
| 1.21 | 20                    | 202.15    | 2 20                          | А     | 3230.592                | 455.396                 | 0.0291          | 1 4100                | E 0720          | 0.7760                | 156.66              |  |
|      | 50                    | 505.15    | 5.50                          | 0     | 123.173                 | 2720.047                | 0.0381          | -1.4100               | 5.9729          | 0.7762                |                     |  |
| 122  | L22 35 308.15         | 209.15    | 2.25                          | Α     | 3385.753                | 749.337                 | 0.0260          | 1 50/6                | 2 4070          | 0 5 4 2 9             | 124.40              |  |
| LZZ  |                       | 506.15    | 5.25                          | 0     | 88.116                  | 2621.125                | 0.0200          | -1.5640               | 3.4979          | 0.5438                | 154.40              |  |
| 1.22 | 40                    | 242.45    | 2 10                          | A     | 3053.097                | 1303.530                | 0.0127          | -1.8626               | 1.4915          | 0.1736                | 400.00              |  |
| 123  | L23 <b>40 31</b> 3    | 513.15    | 5.19                          | 0     | 41.897                  | 1944.241                | 0.0137          |                       |                 |                       | 108.69              |  |

**Table 19**: Effect of temperature for the ligand **2** (10 mM) at 50 mM of acidity, \* A = aqueous phase, O = organic phase.

#### 3.3.2. Diagrams

3.3.2.1. Diagrams for ligand 1 (DS-BTrzPhen)







**Diagram 2:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 1, 2, 5, 10, 15 and 30 minutes of contact time, 50 mM of nitric acids and 10 mM of ligand **1**.



**Diagram 3**: Effect of ligand 1 concentration at the constant 0.05 M acidity, ligand 1 concentration ranging from 1 mM to 25 mM.



**Diagram 4**: Effect of temperature at 15, 20, 25, 30, 35, and 40°C on  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  of ligand 1 at the constant 0.05 M acidity, ligand 1 concentration at 10 mM.



**Diagram 5**: Effect of temperature on the extraction of Am(III) vs Eu(II) in 0.05 M HNO<sub>3</sub> with 10 mM of DS-BTrzPhen (1): plots of logD vs. (1/T).

3.3.2.2. Diagrams for ligand 2 (DAA-BTrzPhen)



**Diagram 6:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 5, 10, 50, 100, 250 and 500 mM of nitric acids and 10 mM of ligand **2**.



**Diagram 7:**  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  at 1, 2, 5, 10, 15 and 30 minutes of contact time, 50 mM of nitric acids and 10 mM of ligand **2**.



**Diagram 8**: Effect of ligand **2** concentration at the constant 0.05 M acidity, ligand **2** concentration ranging from 5 mM to 25 mM.



**Diagram 9**: Effect of temperature at 15, 20, 25, 30, 35, and 40°C on  $D_{Am}$ ,  $D_{Eu}$  and  $SF_{Eu/Am}$  of ligand **2** at the constant 0.05 M acidity, ligand **1** concentration at 10 mM.



**Diagram 10**: Effect of temperature on the extraction of Am(III) vs Eu(II) in 0.05 M HNO<sub>3</sub> with 10 mM of DAA-BTrzPhen (2): plots of logD vs. (1/T).

#### 4. Spectroscopic titrations

4.1. Spectroscopic titrations of DS-BTrzPhen:



**Diagram 11:** Titration of DS-BTrzPhen (1) with  $Eu(NO_3)_3$  in neutral water (I = 0.01 M Me<sub>4</sub>NNO<sub>3</sub>), initial conditions: [DS-BTrzPhen (1)] =  $1 \times 10^{-5}$  M, Volume = 2.0 mL; Titrant: [ $Eu(NO_3)_3$ ] = 1 mM)



**Diagram 12:** Titration of DS-BTrzPhen (1) with  $Tb(NO_3)_3$  in neutral water ( $I = 0.01 \text{ M Me}_4NNO_3$ ), initial conditions: [DS-BTrzPhen (1)] =  $8 \times 10^{-6} \text{ M}$ , Volume = 2.0 mL; Titrant: [Tb(NO\_3)\_3] = 1 mM)



4.2. Spectroscopic titrations of DAA-BTrzPhen:

**Diagram 13:** Titration of DAA-BTrzPhen (1) with  $Eu(NO_3)_3$  in acidic solution of nitric acid ([HNO3] = 0.028, I = 0.01 M Me<sub>4</sub>NNO<sub>3</sub>), initial conditions: [DAA-BTrzPhen (1)] = 2×10<sup>-5</sup> M, Volume = 2.0 mL; Titrant: [Eu(NO<sub>3</sub>)<sub>3</sub>] = 1 mM)



**Diagram 14:** Titration of DAA-BTrzPhen (2) with Eu(OTf)<sub>3</sub> in solution of HClO<sub>4</sub> (0.03 M), initial conditions: [DAA-BTrzPhen (2)] =  $2 \times 10^{-5}$  M, Volume = 2.0 mL; Titrant: [Eu(OTf)<sub>3</sub>] = 1 mM)



**Diagram 15:** Titration of DAA-BTrzPhen (2) with Eu(OTf)<sub>3</sub> in blend of solvents (Acetonitrile/Methanol/Water = 2:2:1), initial conditions:  $[DAA-BTrzPhen (2)] = 2 \times 10^{-5} \text{ M}$ , Volume = 2.0 mL; Titrant:  $[Eu(OTf)_3] = 1 \text{ mM}$ )

| ligand | Ln salt                           | Solvent            | logβ11 | standard<br>deviation <sup>b</sup> | logβ12  | standard<br>deviation <sup>b</sup> | σ        |
|--------|-----------------------------------|--------------------|--------|------------------------------------|---------|------------------------------------|----------|
| 1      | Eu(NO <sub>3</sub> ) <sub>3</sub> | water <sup>a</sup> | 7.052  | 0.0343                             | 12.3672 | 0.1427                             | 0.022057 |
|        | Tb(NO <sub>3</sub> ) <sub>3</sub> | water <sup>a</sup> | 6.5798 | 0.0262                             | 12.0096 | 0.0792                             | 0.014531 |

Table 20: Stability constants for the 1:1 and 1:2 Metal to Ligand Complexes 8 and 9 Determined from Fits to Spectroscopic Data Using HyperQuad<sup>5</sup> (T = 25 °C).  ${}^{a}I = 0.01 \text{ Me}_{4}\text{NNO}_{3}$ ,  ${}^{b}Standard$  deviations determined by the fitting process,  ${}^{c}Sigma$ 



Diagram 16: Speciation diagram for DS-BTrzPhen (1) complexed with  $Eu(NO_3)_3$  in 0.028 HNO<sub>3</sub> using stability constants provides in the Table 20.



Diagram 17: Speciation diagram for DS-BTrzPhen (1) complexed with  $Tb(NO_3)_3$  in 0.028 HNO<sub>3</sub> using stability constants provides in the Table 20.

#### 5. Fluorescence spectroscopy



Diagram 18: Fluorescence emission spectrum of DS-BTrzPhen-Eu complex (0.2 mM, molar ration 2:1) in water at excitation wavelength of 326 nm



Diagram 19: Fluorescence emission spectrum of DS-BTrzPhen-Eu complex (0.2 mM, molar ration 2:1) in water at excitation wavelength of 267 nm.



Diagram 20: Fluorescence emission spectrum of DAA-BTrzPhen-Eu complex (0.2 mM, molar ration 2:1) in aqueous solution of  $HClO_4$  (0.03 M) at excitation wavelength of 326 nm.



Diagram 21: Fluorescence emission spectrum of DAA-BTrzPhen-Eu complex (0.2 mM, molar ration 2:1) in aqueous solution of  $HClO_4$  (0.03 M) at excitation wavelength of 267 nm.



Diagram 22: Superimposition of the fluorescence emission spectrum of DAA-BTrzPhen-Eu complex (0.2 mM, molar ration 2:1) and fluorescence emission spectrum of DAA-BTrzPhen-Eu(OTf)<sub>3</sub> (2.8 mM), both in aqueous solution of  $HClO_4$  (0.03 M) at excitation wavelength of 326 nm.
## 6. References

- A. C. Edwards, P. Mocilac, A. Geist, L. M. Harwood, C. A. Sharrad, N. A. Burton, R.
  C. Whitehead and M. A. Denecke, *Chem. Comm.* 2017, 53, 5001-5004.
- 2 B. P. Gindt, D. G. Abebe, Z. J. Tang, M. B. Lindsey, J. Chen, R. A. Elgammal, T. A. Zawodzinski and T. Fujiwara, *J. Mater. Chem. A*, 2016, **4**, 4288-4295.
- 3 S. Roth, W. Drewe and N. R. Thomas, *Nat. Protoc.* 2010, 5, 1967–1973.
- 4 X. G. Feng, Q. G. He, J. C. Wang, J. Chen, *J. Radioanal. Nucl. Chem.* 2013, **295**, 1495–1503.
- 5 P. Gans, A. Sabatini and A. Vacca, *Talanta*, 1996, 43, 1739–1753.