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All our ML works were completed using Scikit-learn (version 0.23) and 

Tensorflow (version 2.0.0).1,2 Accuracy, area under the receiver operating characteristic 

curve (AUC), F1 score and confusion matrix are adopted in the evaluation criteria of 

the classification task. We chose 77K (temperature of liquid nitrogen) as the dividing 

point between high superconducting critical temperature (high-Tc) and low 

superconducting critical temperature (low-Tc), and found the imbalance of data and 

different penalties for prediction errors, which is a cost-sensitive ML classification task. 

We set the cost function as: , where  and  are the weights 𝑐𝑜𝑠𝑡 = 𝑊1𝐶1 + 𝑊2𝐶2 𝑊1 𝑊2

for judging the punishment of serious errors and general errors. We aimed to reduce 

serious errors without compromising the accuracy,3,4  and  can be expressed as 𝐶1 𝐶2

, where  represent the data in the confusion matrix. 
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Table S1. The basic influencing factors and the corresponding basic descriptors.

Prior Knowledge Basic influencing factors Basic descriptors

Impact of Cu valence 
and Jahn-Teller

number of d orbitals’ 
valence electrons of 

element Cu

space group, number 
of various orbitals’ valence 
electrons, covalent radius, 
column in the periodic table

RVB theory, 
Zhang-Rice model

and t-J model

bond length and bond 
angle, electronegativity, 

radius and magnetic 
moment of Cu ions

covalent radius, space 
group, electronegativity, 

magnetic moment, 
volume of elemental, 

pseudopotential radius

SO(5) super 
symmetry theory

electron doping 
concentration

covalent radius, 
electronegativity, number 

of various orbitals’ valence 
electrons

Impact of electronic 
and magnetic structure

number of various 
orbitals’ valence electrons, 

ionic radius

magnetic moment, 
number of various orbitals’ 

valence electrons

Polarons and Plasmon
electron concentration, 

crystal structure, lattice of 
layered structure

covalent radius, 
electronegativity, number 

of various orbitals’ valence 
electrons, space group, 
pseudopotential radius



Table S2. The setting conditions of the first part of creating a series of virtual samples 

according to the distribution of the training samples. Here we take the cuprate as an 

example and use the Hg-Pb-Ca-Ba-Cu-O element combination for virtual high-

throughput sample screening.

Element Interval Sampling Step
Hg [0.00,0.25] Uniformity 0.01
Pb [0.09,0.33] Uniformity 0.01

Ba   [0.00,0.30]90%
[0.30,1.00]10%

Local
uniformity

0.002
0.018

Ca   [0.00,0.27]76%
  [0.27,1.00]23%

Local
uniformity

0.048
0.015

Cu   [0.20,0.50] Uniformity 0.01
O   [1.00,1.00] Uniformity 1.00



According to the distribution of these elements in the dataset, we construct the 

distribution range of each element and whether the distribution is uniform. We take the 

content of O element as a reference point, i.e., setting the stoichiometric number of O 

element to be always ‘1’, for constructing a virtual sample in the first part; in the second 

part, we need to analyze the relationship between the ratio of metal elements and 

oxygen elements in the dataset. From the distribution of the data set, the ratio of metal 

elements to O elements should be greater than 0.7 and less than 2.7, so candidate 

materials out of this range were deleted. The basic priority order of element filling in 

this step is: Hg→Pb→Ba→Ca→Cu→O. When the chemical formula is generated, the 

priority of the element might be interchanged in the first place, while the rest of the 

priority order remains unchanged. For example, in the virtual high-throughput 

prediction with Pb as the independent variable, the order of element filling was that: 

Pb→Hg→Ba→Ca→Cu→O. Due to the different sequences of elements, virtual 

samples with different preferences will be generated.

Fig. S1. The Tc distribution statistics from the Supercon database.5



Fig. S2. Predicted Tc distribution and some of the best candidates in the Materials 
Project Database. 6

Fig. S3. Neural network training, testing and setup. a The convergence of a model 

training. b Performance of the DNN trained by AFS-2 on a random test, the score of 

R2, RMSE and MAE on the test set are used as the performance indicator of the model. 



c Deep neural network layer setting.

The first three layers have the activation function Rectified Linear Unit (ReLu) 

fully connected layer, and these three layers are frozen, the only thing that can be 

optimized is the number of neurons on each layer. Starting from the fourth layer, adding 

the Batch Normalization (BN) layer and Dropout layer, until the output layer of the last 

layer, the activation function of the output layer also selected ReLu and these unfrozen 

layers are optimized not only neuron parameters but the number of layers. Data are 

divided into three parts: training set, validation set and test set. The training set and 

validation set were used for model training, and the test set was used to evaluate model 

performance. In contrast, the validation set got converged if the performance fluctuation 

is less than 10-5, and the training of the model will be stopped for more than 50 times 

of such convergence condition.

Fig. S4. Residual of DNN trained by AFS-1(S1), the absolute error is mostly within 5K 

and it is distributed within 20K.

Fig. S5. Residual of DNN trained by AFS-2(S2), the absolute error is mostly within 



10K, and it is distributed within 25K.

The trained models were saved as S1model, S2model folders, which can be loaded 

via Tensorflow2.0, to get complete residual information.

Fig. S6. In the interval of 0.44  0.03, each threshold sliding step is set to 0.004. By 

observing the confusion matrix, we find that by adjusting the threshold, the frequency 

of serious errors can be reduced while maintaining other scores, thereby reducing the 

model's serious errors in the classification task. 



a b
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Fig. S7. According to the order of abcd, the manifold learning methods of 

principal component analysis (PAC), multidimensional scaling (MDS), t-distributed 

stochastic neighbor embedding (t-SNE) and isometric feature mapping (Isomap) show 

the dimensionality reduction visualization of the previous layer of the output layer of 

the deep neural network.7–9



Fig. S8. The virtual sample prediction results with a Hg, b Pb, c Ca, d Ba, and e Cu as independent variables by DNN (trained by AFS-1), the blue 

and orange curves represent the highest and lowest predicted values, respectively.



Fig. S9. The virtual sample prediction the highest Tc with Ba by RF model (trained by 

AFS-1), it also found a dip in the 0.2~0.25 interval of Ba weight, there may be a 

mysterious physical effect or possible wrong data in the data set.

In our restricted interval, the highest critical temperature increases as the content 

of the Pb element decreases and increases with the increase of Ba element; for Hg, Ca 

and Cu elements, there is a suitable proportion of components that corresponds to the 

highest Tc. Interestingly, there is a dip in the curve of the highest value of the Ba 

element. It is considered that there could be an outlier in the data, and an outlier is also 

found in the Isomap (Fig S7d) dimensionality reduction visualization in manifold 

learning. This outlier will not affect the performance of our model because of the 

complex inter-layer weights of the DNN, weakening the sensitivity to outliers. We can 

also use it to test whether there are suspicious data in other superconducting 

experimental data. 



Fig. S10. The importance ranking of the AFS-1 descriptors extracted from the RF 

model. The richness of the elements is shown in the high-resolution picture “elem.jpg”.

The source of the basic physical characteristics of the elements is collected from 

the Materials Agnostic Platform for Informatics and Exploration (MAGPIE),10 see 

‘FillFeature.csv’ for detail.
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