1	Methanol steam reforming for hydrogen production over NiTi-O ₃ nanocatalyst
2	with hierarchical porous structure
3	Qijie Jin, ^{a,d†} Xuelu Meng, ^{a†} Peng Wu, ^c Yunhe Li, ^a Mutao Xu, ^{a,b} Ranran Zhou, ^a
4	Mengfei Yang, ^b Haitao Xu, ^{a,d*}
5	a. School of Environmental Science and Engineering, Nanjing Tech University,
6	Nanjing 210009, PR China.
7	b. College of Materials Science and Engineering, Nanjing Tech University, Nanjing
8	210009, PR China
9	c. Key Laboratory of Energy Thermal Conversion and Control of Ministry of
10	Education, School of Energy and Environment, Southeast University, Nanjing,
11	210096, PR China
12	d. Nanjing Gekof Institute of Environmental Protection Technology & Equipment
13	Co., Nanjing 210031, PR China
14	[†] These authors contributed equally to this work.
15	*Corresponding author: Prof. Haitao Xu
16	E-mails: htxu@njtech.edu.cn (Haitao Xu)
17	

18 Materials and chemicals

The polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer (P123, average Mn ~5,800), citric acid monohydrate (AR), nickel chloride hexahydrate (AR), anhydrous ethanol (\geq 99.7%), methanol (GR, \geq 99.7%) and butyl titanate (AR) were purchased from *Sinopharm Chemical Reagent Co., Ltd* (Shanghai, China). Deionized water (AR) was purchased from *Nanjing Wanqing Chemical Galss Instrument Co., Ltd* (Jiangsu, China). All chemicals were of analytical grade and used without further processing.

27 Catalysis measurement and characterization

For the selectivity, the gases were tested by the Shimadzu Gas Chromatography (GC-2014), and a Thermal Conductivity Detector (TCD as abbreviation) was used with a TDX-01 collumn. For the conversion, the liquid components were analyzed by gas chromatography (GC-7820) equipped with FID detector, where the SE-30 chromato-graphic column was responsive to methanol. The content of each reactant in the liquid product can be calculated according to the calibration curve formula.

34 X-ray diffraction (XRD) patterns were obtained on an X-ray diffractometer (Smartlab TM 3Kw, Rigaku, Japan). The 20 scans covered the range 5-85°, and the 35 accelerating voltage and applying current were 40 kV and 40 mA, respectively. The 36 microstructural natures and element mapping of the catalysts have been investigated 37 using a scanning electron microscope (JEOL, JEM-2010UHR). The X-ray 38 photoelectron spectroscopy (XPS) patterns were acquired by the PHI 5600 39 spectrometer with a hemispherical energy analyzer (Mg-K $_{\alpha}$ radiation, 1253.6 eV at 40 100 Watts), and the vacuum degree was maintained at 10⁻⁷ Pa. The samples were 41 dried at 80 °C for 24 h to remove moisture and then were tested without surface 42 treatment. Curve fitting was performed by utilizing XPSPEAK 4.1 with a Shirley-type 43 background. The specific surface area and average pore diameter (BET method) of 44 the samples were measured by N2 adsorption/desorption isotherms at -163 °C using a 45 surface-area analyzer (Micromeritics, 2020M V3.00H). All of the samples were 46 degassed at 350 °C under vacuum for 3 h prior to the adsorption experiments. The 47 temperature programmed desorption of ammonia (NH₃-TPD) was conducted on the 48 CHEMBET-3000 (Quantachrome) to obtain the surface acid properties. All the 49 catalysts were preheated at 450 °C under a helium stream for 1 h, and then cooled to 50 50 °C for the ammonia adsorption. Afterwards, ammonia was desorbed from 50 °C to 51 650 °C at a heating rate of 10 °C·min⁻¹. The temperature programmed desorption of 52 carbon dioxide (CO₂-TPD) was conducted on the CHEMBET-3000 (Quantachrome) 53 to obtain the surface alkaline properties. All the catalysts were preheated at 400 °C 54 under a helium stream for 1 h, and then cooled to 50 °C for the carbon dioxide 55

adsorption. Afterwards, carbon dioxide was desorbed from 50 °C to 650 °C at a 56 heating rate of 10 °C·min⁻¹. The Semiautomatic Micromeritics TPD/TPR 2900 57 instrument was used for the temperature programmed reduction of hydrogen (H2-58 TPR). All the catalyst carriers were preheated to 400 °C under an argon stream for 1 h, 59 and cooled to 50 °C. Then 5% H₂/Ar flow was switched, and the temperature 60 increased from 50 °C to 800 °C at a 10 °C ·min⁻¹ heating rate. The data were collected 61 throughout the whole temperature range. In situ Diffuse Reflectance Infrared Fourier 62 Transform Spectra (in situ DRIFTS) were collected by a Nicolet IS50 spectrometer. 63 All the catalysts were preheated at 400 $^\circ C$ under a N_2 stream for 2 h, and then cooled 64 to the desired temperature. The methanol, water vapor and nitrogen were pumped into 65 the system for 10 min when the temperature was cooled to 400 °C. Then the 66 temperature increased to 450 °C and 500 °C, and kept for 10 min. 67

Fig.S2 HR-TEM micrograph of TiO₂ catalyst.

Fig.S5 (a) Nitrogen adsorption-desorption curve, (b) pore size distribution of different
catalysts.

Fig.S6 The relationship between the NiO content and H₂ consumption of different

catalysts.

100 Fig.S8 In situ DRIFT spectra of TiO₂ catalyst at different temperatures: (a) methanol

104 **Fig.S9** *In situ* DRIFT spectra of 10%Ni-Ti-O_x catalyst at different temperatures: (a)

105 methanol reacted with H_2O at 450 °C and (d) methanol reacted with H_2O at 500 °C.

(site 1) on the (101) facet of anatase TiO_2 , (c) the second CH_3OH adsorption model (site 2) on the (101) facet of anatase TiO_2 ; (d) the (110) facet of rutile TiO_2 , (e) the first CH_3OH adsorption model (site 1) on the (110) facet of rutile TiO_2 , (f) the second CH_3OH adsorption model (site 2) on the (110) facet of rutile TiO_2 ; (g) the (104) facet of NiTiO_3, (h) the first CH_3OH adsorption model (site 1) on the (104) facet of NiTiO_3, (i) the second CH_3OH adsorption model (site 2) on the (104) facet of NiTiO_3.