# Supplementary Material

# Ionic liquid mixtures as energy storage materials: a preliminary and comparative study based on thermal storage density.

Julio I. Urzúa,<sup>a</sup>\* María Luisa Valenzuela,<sup>b</sup> Jenifer Cavieres,<sup>c</sup> María José Inestrosa-Izurieta.<sup>a</sup>

<sup>a</sup>Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear, Ruta 68, km 20, Pudahuel, Santiago, Chile.

<sup>b</sup>Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Grupo de Investigación en Energía y Procesos Sustentables, Av. El Llano Subercaseaux 2801, Santiago, Chile.

<sup>c</sup>Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, San Joaquín, Santiago, Chile.

#### julio.urzua@cchen.cl

#### Table of contents

| Synthetic procedures                                             | S2         |
|------------------------------------------------------------------|------------|
| Adjustment parameters of heat capacities (Cp)                    | S5         |
| Experimental densities                                           | S5         |
| Adjustment parameters of density                                 | <b>S</b> 6 |
| Thermal gravimetric analysis (TGA) of ionic liquids and mixtures | <b>S</b> 7 |
| Examples of thermograms analyzed by DTA                          | <b>S</b> 8 |

#### Synthetic procedures

#### 1-butyl-3-methylimidazolium bromide ([Bmim][Br])

1-bromobutane (63.03 mmol, 6.8 mL) was slowly added to a distilled *N*-methylimidazole (63.04 mmol, 5 mL) at 0 °C. The reaction mixture was stirred and heated to 80 °C for 12 h under N<sub>2</sub>. The obtained viscous liquid was washed with ethyl acetate (3x50 mL) and residual solvents were removed at reduced pressure. The obtained IL was dissolved in CH<sub>3</sub>Cl (50 mL) and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (60.51 mmol, 13.19 g) was collected in 96% yield.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>): 0.96 (t, 3H, J = 7.4 Hz); 1.39 (sext., 2H, J1 = 7.4 Hz); 1.92 (q, 2H, J = 7.4 Hz), 4.14 (s, 3H); 4.36 (t, 2H, J = 7.4 Hz); 7.62 (s, 1H); 7.74 (s, 1H); 10.25 (s, 1H). <sup>13</sup>**C RMN** (101 MHz, CDCl<sub>3</sub>): 13,7 (CH3); 19,7 (CH2); 32,4 (CH2); 37,0 (CH3); 50,1 (CH2); 122,6 (CH); 124,1 (CH); 137,4 (CH).

### 1-butyl-2,3-dimethylimidazolium bromide ([Bdmim][Br])

1-bromobutane (31.16 mmol, 3.36 mL), was slowly added to a 1,2-dimethylimidazole (31.16 mmol, 29.96 g) at 0 °C. The reaction mixture was stirred and heated to 80 °C for 12 h under N<sub>2</sub>. The obtained viscous liquid was washed with ethyl acetate (3x30 mL) and residual solvents were removed at reduced pressure. The obtained IL was dissolved in CH<sub>3</sub>Cl (30 mL) and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (28.98 mmol, 6.96 g) was collected in 93% yield.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 0.96 (t, J = 7.4 Hz, 3H); 1.40 (sext., 2H, J = 7.4 Hz); 1.82 (q, 2H, J = 7.4 Hz); 2.84 (s, 3H); 4.04 (s, 3H); 4.27 (t, 2H, J = 7.4 Hz); 7.64 (d, 1H, J = 2.0 Hz); 7.80 (d, 1H, J = 2.0 Hz).
<sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>: 11.2 (CH3); 13.7 (CH2); 19.7 (CH2); 32.0 (CH3); 36.4 (CH3); 48.9 (CH2), 121.6 (CH); 123.3 (CH); 143.8 (C).

## 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])

A round bottom flask equipped with a stirring bar was charged with 1-butyl-3-methylimidazolium bromide (82.11 mmol, 20.29 g) and dissolved in acetone (50 mL). NaBF<sub>4</sub> (82.11 mmol, 9.01 g) was added to the solution followed by stirring for 12 h at rt. The white precipitate was allowed to settle, filtered and the solvent was removed at reduced pressure. Residue was dissolved in CH<sub>3</sub>Cl (30 mL) and washed with deionized water (6x20 mL). The combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (78.00 mmol, 17.64 g) was collected in 95% yield.

<sup>1</sup>**H-NMR** (400 MHz, DMSO): δ (ppm): 8.87 (s, 1H, C2H); 7.43 (t, *J* = 1.7 Hz, 1H, C4H); 7.42 (t, *J* = 1.6 Hz, 1H, C5H); 4.19 (t, *J* = 7.2 Hz, 2H, NCH2); 3.92 (s, 3H, NCH3); 1.9-1.66 (qt, 2H,

CH2CH2CH2); 1.36 (st, 2H, CH2CH2CH3); 0.93 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup>**CNMR** (101 MHz, DMSO): δ (ppm): 136.41 (C2H); 123.59 (C4H); 122.25 (C5H); 48.52 (NCH2); 35.71 (NCH3); 31.35 (CH2CH2CH2); 18.76 (CH2CH2CH3); 13.23 (CH2CH3).

#### **1-butyl-2,3-dimethylimidazolium tetrafluoroborate** ([Bdmim][BF<sub>4</sub>])

A round bottom flask equipped with a stirring bar was charged with 1-butyl-2,3-dimethylimidazolium bromide (87.00 mmol, 20.88 g) and dissolved in acetone (50 mL). NaBF<sub>4</sub> (87.00 mmol, 9.55 g) was added to the solution followed by stirring for 12 h at rt. The white precipitate was allowed to settle, filtered and the solvent was removed at reduced pressure. Residue was dissolved in CHCl<sub>3</sub> (30 mL) and washed with deionized water (6x20 mL). The combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12h. The resulting IL (80.91 mmol, 19.43 g) was collected in 93% yield.

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 7.63 (d, *J* = 2.1 Hz, 1H, C2H), 7.59 (d, *J* = 2.0 Hz, 1H, C4H), 4.11 (t, *J* = 7.3 Hz, 2H, NCH2), 3.75 (s, 3H, NCH3), 2.58 (s, 3H, NCH3), 1.78-1.60 (m, 2H, CH2CH2), 1.38-1.21 (m, 2H, CH2CH3), 0.91 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup> C NMR (101 MHz, DMSO) δ 144.25 (NCH), 122.27 (CH), 120.84 (CH), 47.30 (NCH2), 34.61 (NCH3), 31.18 (CH2), 18.87 (CH2), 13.36 (CH3), 9.06 (NCH3).

## 1-buyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF<sub>6</sub>])

A round bottom flask equipped with a stirring bar was charged with 1-butyl-3-methylimidazolium bromide (92.56 mmol, 20.18g) and dissolved in deionized water (50 mL). KPF<sub>6</sub> (92.56 mmol, 17.04 g) was added to the solution followed by stirring for 12 h at rt. Reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x30mL) and the combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (85.15 mmol, 24.18g) was collected in 90% yield.

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.07 (s, 1H, C2H), 7.73 (t, *J* = 1.6 Hz, 1H, C4H), 7.67 (t, *J* = 1.5 Hz, 1H, C5H), 4.16 (t, *J* = 7.2 Hz, 2H, NCH2), 3.85 (s, 3H, NCH3), 1.84-1.71 (m, 2H, CH2CH2), 1.33-1.20 (m, 2H, CH2), 0.91 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup> C NMR (101 MHz, DMSO) δ 136.50 (C2H), 123.60 (C4H), 122.25 (C5H), 48.56 (NCH2), 35.71 (NCH3), 31.35 (CH2CH2), 18.78 (CH2CH3), 13.22 (CH3).

## 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ([Bdmim][PF<sub>6</sub>])

A round bottom flask equipped with a stirring bar was charged with 1-octyl-2,3-dimethylimidazolium bromide (64.78 mmol, 15.55g) and dissolved in deionized water (50 mL).  $\text{KPF}_6$  (64.78 mmol, 11.93g) was added to the solution followed by stirring for 12 h at rt. Reaction mixture was extracted with  $\text{CH}_2\text{Cl}_2$  (3x30mL) and the combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (58.30 mmol, 17.37g) was collected in 90% yield.

<sup>1</sup> **H** NMR (400 MHz, DMSO) δ 7.62 (d, *J* = 2.1 Hz, 1H, C2H), 7.59 (d, *J* = 2.0 Hz, 1H, C4H), 4.10 (t, *J* = 7.3 Hz, 3H, NCH3), 3.74 (s, 3H, CCH3), 2.57 (s, 1H), 1.79 – 1.59 (m, 2H, CH2CH2), 1.40 - 1.19 (m, 2H, CH2CH3), 0.91 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup> C NMR (101 MHz, DMSO) δ 144.22 (NCH), 122.29 (CH), 120.84 (CH), 47.30 (NCH2), 34.62 (NCH3), 31.16 (CH2), 18.87 (CH2), 13.36 (CH3), 9.05 (NCH3).

#### **1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide** ([Bmim][Tf<sub>2</sub>N])

A round bottom flask equipped with a stirring bar was charged with 1-butyl-3-methylimidazolium bromide (11.79 mmol, 25.7g) and dissolved in deionized water (50 mL). A aqueous solution of Li[Tf<sub>2</sub>N] (11.79 mmol, 33.85g), was slowly added to the solution followed by stirring for 12 h at rt. Reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x30mL) and the combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (11.55 mmol, 4.85) was collected in 98% yield.

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.10 (s, 1H, C2H), 7.75 (t, *J* = 1.7 Hz, 1H, C4H), 7.69 (t, *J* = 1.6 Hz, 1H, C5H), 4.16 (t, *J* = 7.2 Hz, 2H, NCH2), 3.85 (s, 3H, NCH3), 1.85-1.69 (m, 2H, CH2CH2), 1.36-1.18 (m, 2H, CH2CH3), 0.91 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup> C NMR (101 MHz, DMSO) δ 123.60 (C2H), 122.25 (C4H), 121.11 (C5H), 117.91 (CF3), 48.54 (NCH2), 35.70 (NCH3), 31.35 (CH2CH2), 18.75 (CH2CH3), 13.16 (CH3).

### 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bdmim][Tf<sub>2</sub>N])

A round bottom flask equipped with a stirring bar was charged with 1-butyl-3-methylimidazolium bromide (17.13 mmol, 4.11) and dissolved in deionized water (50 mL). A aqueous solution of Li[Tf<sub>2</sub>N] (17.13 mmol, 4.92g), was slowly added to the solution followed by stirring for 12 h at rt. Reaction mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x30mL) and the combined organic layers were dried and filtered through diatomaceous earth. Solvent was removed under reduced pressure and the product was dried under vacuum at 70 °C for 12 h. The resulting IL (16.27 mmol, 7.05g) was collected in 95% yield.

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 7.63 (d, *J* = 2.1 Hz, 1H, C4H), 7.60 (d, *J* = 2.1 Hz, 1H, C5H), 4.10 (t, *J* = 7.3 Hz, 2H, NCH2), 3.75 (s, 3H, NCH3), 2.58 (s, 3H, CCH3), 1.78-1.61 (m, 2H, CH2CH2), 1.37-1.20 (m, 2H, CH2), 0.91 (t, *J* = 7.4 Hz, 3H, CH3).

<sup>13</sup> C NMR (101 MHz, DMSO) δ 144.20 (C2H), 122.29 (C4H), 120.84 (C5H), 117.90 (CF3), 47.31 (NCH2), 34.61 (CH3), 31.16 (CH2), 18.86 (CH2), 13.29 (CH3), 9.06 (CH3).

# Adjustment parameters of heat capacities (Cp)

| IL or mixture | A0        | A1     | A2      | R <sup>2</sup> |
|---------------|-----------|--------|---------|----------------|
| IL1           | -0,00005  | 0,04   | -6,253  | 0,969          |
| IL2           | -0,000048 | 0,043  | -7,855  | 0,994          |
| IL3           | 0,000007  | 0,002  | -0,2699 | 0,976          |
| IL4           | 0,000005  | 0,001  | 0,599   | 0,998          |
| IL5           | -0,000067 | 0,058  | -10,555 | 0,975          |
| IL6           | -0,000032 | 0,035  | -7,098  | 0,998          |
| M1            | -0,00007  | 0,062  | -11,84  | 0,988          |
| M2            | -0,000017 | 0,033  | -8,339  | 0,923          |
| M3            | -0,000081 | 0,065  | -11,6   | 0,965          |
| M4            | -0,000035 | 0,03   | -5,122  | 0,978          |
| M5            | -0,00001  | 0,008  | -0,005  | 0,958          |
| M6            | -0,000045 | 0,037  | -6,344  | 0,944          |
| M7            | -0,00005  | 0,04   | -6,329  | 0,905          |
| M8            | -0,000014 | 0,0033 | 2,2161  | 0,965          |
| M9            | -0,000002 | 0,005  | -0,2    | 0,932          |
| M10           | -0,00008  | 0,068  | -12,85  | 0,985          |
| M11           | -0,000243 | 0,201  | 38,54   | 0,998          |
| M12           | -0,000138 | 0,104  | -17,783 | 0,964          |
| M13           | 0,000012  | -0,005 | 1,8755  | 0,997          |
| M14           | -0,000123 | 0,103  | -18,979 | 0,995          |
| M15           | 0,00003   | -0,018 | 4,693   | 0,947          |

Polynomic adjustment:  $Cp = A0 + A1 \cdot T + A2 \cdot T^2$ 

# Experimental densities of ionic liquids and mixtures

|     | 293.15 K | 313.15 K | 323.15 K | 333.15 K | 355.15 K |
|-----|----------|----------|----------|----------|----------|
| IL1 | 1205.9   | 1191.2   | 1184.0   | 1176.9   | 1162.9   |
| IL2 | 1373.1   | 1356.0   | 1347.6   | 1339.3   | 1322.9   |
| IL3 | 1436.6   | 1417.3   | 1407.7   | 1398.3   | 1379.6   |
| IL4 | 1190.3   | 1176.3   | 1169.3   | 1162.5   | 1148.9   |
| IL5 |          | 1332.3   | 1324.2   | 1316.2   | 1298.1   |
| IL6 | 1414.5   | 1395.5   | 1386.2   | 1376.9   | 1358.4   |
| M1  | 1342.5   | 1324.1   | 1314.6   | 1311.3   | 1294.4   |
| M2  | 1291.9   | 1276.8   | 1268.1   | 1260.3   | 1245.1   |

Experimental density (kg/m<sup>3</sup>)

| M3  | 1405.4 | 1387.1 | 1378.0 | 1369.0 | 1351.0 |
|-----|--------|--------|--------|--------|--------|
| M4  | 1325.5 | 1308.6 | 1300.2 | 1291.9 | 1274.9 |
| M5  | 1272.6 | 1257.3 | 1249.7 | 1242.1 | 1226.9 |
| M6  | 1380.8 | 1362.8 | 1354.0 | 1345.2 | 1327.8 |
| M7  | 1201.7 | 1187.3 | 1180.3 | 1173.3 | 1159.5 |
| M8  | 1355.4 | 1338.7 | 1330.3 | 1322.1 | 1305.9 |
| M9  | 1423.8 | 1404.6 | 1395.2 | 1385.8 | 1367.2 |
| M10 | 1280.6 | 1265.0 | 1257.4 | 1249.8 | 1234.8 |
| M11 | 1335.1 | 1317.9 | 1309.5 | 1301.1 | 1284.4 |
| M12 | 1279.7 | 1264.1 | 1256.4 | 1248.8 | 1233.7 |
| M13 | 1395.6 | 1377.5 | 1368.5 | 1359.6 | 1341.8 |
| M14 | 1333.5 | 1316.4 | 1307.9 | 1299.5 | 1282.8 |
| M15 | 1396.5 | 1378.5 | 1369.6 | 1360.7 | 1343.2 |

# Adjustment parameters of densities of ionic liquids and mixtures

|     | A0     | A1      | A2      | R <sup>2</sup> |
|-----|--------|---------|---------|----------------|
| IL1 | 1461.4 | -1.001  | 0.004   | 1              |
| IL2 | 1663.7 | -1.121  | 0.0004  | 1              |
| IL3 | 1756.8 | -1.2115 | 0.0004  | 1              |
| IL4 | 1422   | -0.8746 | 0.0003  | 1              |
| IL5 | 1353.1 | 0.6305  | -0.0022 | 0.9999         |
| IL6 | 1719.1 | -1.1268 | 0.0003  | 1              |
| M1  | 1817.3 | -2.3159 | 0.0024  | 0.9918         |
| M2  | 1537,9 | -0.8845 | 0.0002  | 0.9996         |
| M3  | 1691.9 | -1.0372 | 0.0002  | 1              |
| M4  | 1568.6 | -0.8194 | 0.00004 | 1              |
| M5  | 1501.9 | -0.8    | 0.00006 | 1              |
| M6  | 1676.4 | -1.1137 | 0.0004  | 1              |
| M7  | 1444.6 | -0.9337 | 0.0004  | 1              |
| M8  | 1633   | -1.0485 | 0.0003  | 1              |
| M9  | 1737   | -1.1737 | 0.0004  | 1              |
| M10 | 1541.1 | -0.9937 | 0.0004  | 1              |
| M11 | 1613.3 | -1.0368 | 0.0003  | 1              |
| M12 | 1537.5 | -0.9741 | 0.0003  | 1              |
| M13 | 1679.2 | -1.0272 | 0.0002  | 1              |
| M14 | 1608.2 | -1.0142 | 0.0003  | 1              |
|     |        |         |         |                |

| M15 | 1687.6 | -1.0808 | 0.0003 | 1 |
|-----|--------|---------|--------|---|
|-----|--------|---------|--------|---|

#### Thermal gravimetric analysis (TGA-DTA) of ionic liquids and mixtures

Figure S1: TGA thermograms for the six inicial ILs.



Figure S2: TGA thermograms for the binary mixtures of ILs.



Figure S3: TGA thermograms for the reciprocal binary mixtures of ILs.



Examples of thermograms analyzed by DTA

Figure S4: IL2 - TGA thermogram.





Figure S5: IL5 - TGA thermogram.







Figure S7: M6 - TGA thermogram.

Figure S8: M15 - TGA thermogram.

