Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Atomic insights into the mechanisms of Al³⁺ or Cr³⁺ affecting ferrihydrite

nucleation

S.I. 1 EXAFS spectra of Fe hydroxide minerals (Fh, Goe, Hem, Aka, Lep) and aqueous Fe species (FeNitr02MHNO3, FeNitr02h and FeNitr05h) from (Zhu et al., 2016).

$\Gamma = (011)_3(11_20)_3$ in $\Gamma = 0.0000000000000000000000000000000000$										
Standards	μ-oxo dimer	$Fe(H_2O)_6^{3+}$	$Fe(OH)(H_2O)_6^{2+}$	$Fe(OH)_3(H_2O)_3$						
FeNitr05h	0.470	0.477	0.053	1.26×10 ⁻¹⁰						
FeNitr02h	0.271	0.689	0.040	2.63×10 ⁻¹¹						
FeNitr02MHNO3	0.128	0.843	0.028	5.72×10 ⁻¹²						

S.I. 2 The molar fractions of μ -oxo dimer, $Fe(H_2O)_6^{3+}$, $Fe(OH)(H_2O)_6^{2+}$ and $Fe(OH)_3(H_2O)_3$ in FeNitr02MHNO3, FeNitr02h and FeNitr05h (Zhu et al., 2016).

S.I. 3 Time-resolved UV-Vis spectra of the immediate products during the ferrihydrite formation in three systems.

S.I. 4 Time-resolved Fe K-edge EXAFS spectra of reaction intermediates in the three systems.

S.I. 5 Linear combination fitting of Fe K-edge EXAFS spectra of the reaction intermediates in the three systems (red circles is experimental data; black line is fitting data. Left: Fe system, middle: Al+Fe system, right: Cr+Fe system)

Time (min)	ferrihydrite	error	μ-oxo dimer	error	$Fe(H_2O)_6^{3+}$	error	Fe(OH)(H ₂ O) ₆ ²⁺	error
10	0.00%	/	37.90%	4.17%	57.48%	8.87%	4.57%	0.56%
20	8.40%	13.30%	40.34%	5.05%	46.59%	10.95%	4.67%	0.70%
30	11.50%	2.40%	43.68%	1.13%	40.09%	1.14%	4.84%	0.13%
40	12.10%	5.70%	44.65%	4.41%	38.34%	9.39%	4.93%	0.60%
50	19.20%	4.30%	42.89%	5.85%	33.18%	11.37%	4.65%	0.78%
60	28.00%	3.50%	34.20%	3.28%	33.94%	5.89%	3.87%	0.43%
70	33.70%	2.60%	31.82%	1.22%	30.59%	1.24%	3.90%	0.14%
80	39.20%	2.50%	28.84%	1.18%	28.73%	1.19%	3.22%	0.13%
90	47.60%	2.10%	24.06%	0.99%	25.61%	1.00%	2.74%	0.11%
100	52.80%	4.10%	19.84%	1.87%	25.01%	3.68%	2.35%	0.24%
110	58.30%	9.60%	16.02%	5.05%	23.69%	7.82%	1.99%	0.63%
120	62.70%	9.70%	16.33%	5.13%	19.08%	7.93%	1.88%	0.64%
130	68.70%	9.40%	12.85%	9.18%	16.93%	23.58%	1.51%	1.33%
140	80.20%	4.70%	8.03%	2.14%	10.84%	4.17%	0.91%	0.28%
150	85.10%	10.90%	6.75%	5.77%	7.39%	8.91%	0.75%	0.72%
160	91.30%	2.80%	1.64%	1.32%	6.90%	1.34%	0.23%	0.15%

S.I. 6 Evolution of the proportions of various Fe species with time during the ferrihydrite formation

in the Fe system.

Time (min)	ferrihydrite	error	μ-oxo dimer	error	$Fe(H_2O)_6^{3+}$	error	$Fe(OH)(H_2O)_6^{2+}$	error
10	0.00%	/	29.63%	2.03%	66.29%	4.49%	4.02%	0.28%
20	0.00%	/	36.56%	4.84%	58.83%	17.36%	4.61%	0.79%
30	5.20%	2.40%	40.13%	1.13%	49.89%	1.14%	4.81%	0.13%
40	3.70%	2.80%	48.28%	1.32%	42.76%	1.34%	5.40%	0.15%
50	9.80%	2.80%	44.52%	1.32%	40.68%	1.34%	5.04%	0.15%
60	19.10%	2.30%	40.20%	1.08%	36.23%	1.10%	4.50%	0.12%
70	27.10%	2.20%	36.01%	1.03%	32.89%	1.05%	4.01%	0.12%
80	37.90%	2.10%	28.77%	0.99%	29.96%	1.00%	3.28%	0.11%
90	51.60%	4.40%	21.33%	1.98%	24.61%	3.86%	2.45%	0.26%
100	60.70%	4.30%	15.36%	1.92%	22.09%	3.73%	1.72%	0.25%
110	69.70%	8.70%	7.93%	4.61%	21.06%	7.12%	1.21%	0.58%
120	73.30%	10.80%	8.98%	2.02%	16.55%	5.07%	1.17%	0.30%
130	78.30%	4.70%	10.56%	2.14%	10.00%	4.17%	1.13%	0.28%
140	88.80%	4.70%	5.87%	2.10%	4.74%	4.13%	0.57%	0.27%
150	92.90%	2.10%	6.40%	0.57%	0.58%	1.45%	0.12%	0.08%
160	93.50%	2.60%	6.27%	1.22%	0.00%	1.24%	0.56%	0.14%

S.I. 7 Percentage of different Fe species with time in the Al+Fe system.

Time (min)	ferrihydrite	error	μ-oxo dimer	error	$Fe(H_2O)_6^{3+}$	error	$Fe(OH)(H_2O)_6^{2+}$	error
10	0.00%	/	29.52%	3.65%	66.41%	15.00%	4.02%	0.64%
20	0.00%	/	39.40%	4.40%	55.82%	15.38%	4.76%	0.71%
30	5.90%	9.50%	39.47%	5.05%	49.93%	7.82%	4.72%	0.63%
40	8.30%	5.40%	46.26%	0.55%	40.36%	3.62%	5.09%	0.12%
50	10.10%	2.60%	43.38%	1.22%	41.63%	1.24%	4.92%	0.14%
60	22.50%	2.50%	38.69%	1.18%	34.55%	1.19%	4.27%	0.13%
70	35.80%	3.60%	30.24%	1.63%	30.56%	3.15%	3.39%	0.21%
80	42.60%	2.20%	25.96%	1.03%	28.35%	1.05%	3.00%	0.12%
90	48.00%	9.10%	21.43%	4.83%	27.99%	7.47%	2.59%	0.60%
100	54.00%	4.30%	20.55%	1.98%	23.10%	3.86%	2.35%	0.26%
110	65.30%	4.10%	16.02%	1.87%	16.87%	3.68%	1.80%	0.24%
120	71.90%	4.80%	12.76%	0.39%	13.82%	2.46%	1.40%	0.08%
130	79.90%	2.10%	5.29%	0.57%	14.10%	1.45%	0.82%	0.08%
140	88.60%	4.80%	7.00%	2.20%	3.71%	4.31%	0.67%	0.29%
150	85.70%	3.50%	8.35%	1.65%	5.08%	1.67%	0.87%	0.19%
160	91.32%	5.70%	0.05%	0.73%	8.41%	4.81%	0.22%	0.16%

S.I. 8 Percentage of different Fe species with time in the Cr+Fe system.

]	R-factor					ΔR factor% ⁸	٤	
-	Time	DC*	DS with	DS with	DS with	DS with	DS with	DS with	DS with	DS with	DS with	DS with
	(min)	D5	Fh	Goe	Hem	Aka	Lep	Fh	Goe	Hem	Aka	Lep
	10	0.058	0.052	0.052	0.056	0.054	0.058	-10.90%	-10.10%	-4.30%	-6.10%	-0.50%
	20	0.041	0.033	0.037	0.04	0.037	0.041	-19.51%	-8.70%	-3.50%	-8.90%	-0.40%
	30	0.042	0.033	0.039	0.041	0.038	0.042	-21.50%	-8.00%	-2.50%	-9.40%	-1.10%
	40	0.043	0.033	0.039	0.042	0.038	0.043	-25.00%	-10.70%	-4.50%	-12.20%	-2.10%
	50	0.043	0.03	0.037	0.041	0.036	0.041	-30.30%	-13.70%	-4.60%	-15.90%	-4.20%
	60	0.054	0.029	0.042	0.051	0.04	0.05	-45.40%	-22.70%	-6.20%	-26.60%	-8.00%
	70	0.062	0.028	0.044	0.056	0.04	0.057	-54.40%	-29.00%	-9.80%	-35.40%	-9.30%
Fe	80	0.065	0.027	0.042	0.06	0.039	0.054	-58.00%	-35.20%	-7.60%	-40.50%	-17.60%
system	90	0.077	0.024	0.047	0.067	0.04	0.065	-68.50%	-39.40%	-12.60%	-48.40%	-15.90%
	100	0.104	0.024	0.054	0.091	0.045	0.078	-77.30%	-47.60%	-12.40%	-56.70%	-25.20%
	110	0.12	0.024	0.059	0.104	0.047	0.088	-80.40%	-50.90%	-13.10%	-61.20%	-27.00%
	120	0.144	0.022	0.064	0.123	0.049	0.105	-84.60%	-55.40%	-14.20%	-66.00%	-27.30%
	130	0.164	0.025	0.073	0.141	0.054	0.117	-84.80%	-55.80%	-14.00%	-66.80%	-29.00%
	140	0.205	0.027	0.087	0.173	0.062	0.15	-86.80%	-57.50%	-15.60%	-69.70%	-27.00%
	150	0.226	0.026	0.092	0.191	0.065	0.16	-88.50%	-59.40%	-15.70%	-71.10%	-29.30%
	160	0.22	0.039	0.089	0.186	0.067	0.154	-82.40%	-59.60%	-15.70%	-69.70%	-30.10%
	10	0.036	0.032	0.033	0.035	0.033	0.036	-11.11%	-8.80%	-3.20%	-9.90%	-0.10%
	20	0.031	0.027	0.03	0.031	0.03	0.031	-14.70%	-6.00%	-1.50%	-6.10%	0.00%
Al+Fe	30	0.031	0.023	0.03	0.031	0.029	0.031	-25.80%	-5.30%	-1.20%	-6.30%	-0.30%
system	40	0.033	0.026	0.032	0.033	0.031	0.033	-21.21%	-10.60%	-2.50%	-6.70%	-0.30%
	50	0.036	0.028	0.032	0.035	0.031	0.036	-23.60%	-13.50%	-4.00%	-13.50%	-1.60%
	60	0.041	0.024	0.033	0.039	0.03	0.038	-41.90%	-21.50%	-4.70%	-26.10%	-6.90%

S.I. 9 R factor and ΔR factor% obtained from EXAFS LCF analysis.

	70	0.049	0.022	0.035	0.046	0.031	0.043	-55.60%	-33.30%	-6.20%	-36.90%	-12.50%
	80	0.061	0.019	0.035	0.054	0.029	0.05	-69.50%	-43.30%	-11.40%	-53.10%	-17.90%
	90	0.092	0.021	0.048	0.08	0.038	0.072	-77.20%	-62.20%	-12.60%	-58.60%	-21.50%
	100	0.115	0.019	0.055	0.099	0.039	0.084	-83.80%	-57.90%	-13.30%	-65.70%	-26.60%
	110	0.137	0.019	0.056	0.116	0.039	0.101	-86.40%	-60.30%	-15.60%	-71.30%	-26.70%
	120	0.159	0.028	0.069	0.139	0.05	0.107	-82.20%	-64.40%	-12.10%	-68.60%	-32.20%
	130	0.192	0.021	0.072	0.16	0.046	0.135	-89.00%	-63.90%	-16.50%	-76.20%	-29.80%
	140	0.221	0.021	0.083	0.184	0.051	0.156	-90.40%	-67.20%	-16.80%	-76.90%	-29.60%
	150	0.283	0.028	0.105	0.228	0.06	0.202	-90.30%	-70.80%	-19.20%	-78.80%	-28.40%
	160	0.26	0.029	0.09	0.213	0.055	0.179	-89.00%	-59.70%	-18.10%	-78.70%	-31.20%
	10	0.033	0.028	0.031	0.032	0.03	0.033	-15.50%	-5.90%	-3.80%	-7.90%	0.00%
	20	0.026	0.024	0.025	0.026	0.025	0.026	-10.50%	-3.90%	-1.30%	-4.10%	0.00%
	30	0.029	0.023	0.027	0.028	0.027	0.029	-20.69%	-5.80%	-2.20%	-6.40%	-0.10%
	40	0.028	0.022	0.025	0.027	0.024	0.028	-22.50%	-9.70%	-4.00%	-12.50%	-0.80%
	50	0.036	0.027	0.032	0.034	0.03	0.035	-23.80%	-11.90%	-5.20%	-15.20%	-2.30%
	60	0.046	0.024	0.033	0.042	0.03	0.041	-47.40%	-27.10%	-7.00%	-33.90%	-10.30%
	70	0.059	0.019	0.036	0.051	0.029	0.052	-68.00%	-39.70%	-13.50%	-51.40%	-12.10%
Cr+Fe	80	0.071	0.019	0.038	0.062	0.031	0.057	-73.10%	-46.90%	-12.40%	-57.10%	-19.80%
system	90	0.085	0.018	0.042	0.074	0.032	0.067	-78.90%	-50.90%	-13.10%	-62.90%	-21.50%
	100	0.103	0.018	0.047	0.088	0.033	0.079	-82.30%	-54.20%	-14.30%	-68.00%	-23.70%
	110	0.13	0.017	0.051	0.107	0.034	0.097	-86.80%	-60.90%	-17.40%	-74.10%	-25.20%
	120	0.163	0.025	0.061	0.131	0.04	0.122	-84.80%	-62.60%	-19.90%	-75.20%	-25.00%
	130	0.189	0.02	0.07	0.154	0.043	0.137	-89.40%	-63.00%	-18.70%	-77.10%	-27.50%
	140	0.227	0.022	0.076	0.181	0.046	0.163	-90.10%	-66.30%	-20.20%	-79.70%	-28.00%
	150	0.24	0.021	0.087	0.203	0.059	0.16	-91.30%	-63.80%	-15.50%	-75.60%	-33.30%
	160	0.329	0.028	0.179	0.293	0.144	0.254	-91.50%	-45.60%	-10.90%	-56.20%	-22.70%

*DS is short for dissolved Fe species. & ΔR factor%=(R-factor_{time} - R-factor_{10min})/R-factor_{10min}.

S.I. 10 XRD patterns of the solids obtained at the end of reaction in the three systems.

S.I. 11 Fitting results of Fe K-edge EXAFS (left) and Fourier transformed spectra of the reaction intermediates during ferrihydrite formation in Fe system (red circles is experimental data; black line is fitting data).

Time (min) Path CN σ^2 $E_0(eV)$ R(Å) R factor 0.29 10 Fe-O 3.8(0.3) 0.0040(0.0006) 2.012(0.005) 0.0122 20 Fe-O 3.5(0.3) 0.0040(0.0008)0.83 2.026(0.006) 0.0182 30 Fe-O 3.6(0.3) 0.0048(0.0008) 0.34 2.028(0.006) 0.0163 0.99 40 Fe-O 3.4(0.3) 0.0046(0.0009)2.034(0.007)0.0222 50 Fe-O 3.7(0.4)0.0060(0.0011) 0.07 2.030(0.008) 0.0269 60 Fe-O 3.7(0.4)0.0056(0.0009)-0.24 2.028(0.007)0.0199 Fe-O 3.3(0.4)0.0047(0.0011) 2.024(0.018) 70 0.10 0.0227 Fe-Fe₁ 0.7(0.6)0.0119(0.0126) 3.061(0.008) Fe-O 4.1(0.5)0.0070(0.0011) 2.014(0.015) 80 1.3(1.1)-0.87 0.0104 Fe-Fe₁ 0.0132(0.0121) 3.060(0.059) Fe-Fe₂ 3.2(1.1)0.0341(0.0654) 3.358(0.008) Fe-O 4.3(0.6) 0.0080(0.0014)2.013(0.010) -0.67 90 Fe-Fe₁ 2.0(1.7)0.0163(0.0143) 3.084(0.049) 0.0138 Fe-Fe₂ 0.6(0.5)0.0078(0.0180) 3.383(0.046) Fe-O 4.6(0.5)0.0083(0.0011) 2.000(0.008)100 -3.03 0.0085 Fe-Fe₁ 2.2(1.6) 0.0122(0.0071) 3.060(0.028) Fe-Fe₂ 2.1(0.7)0.0244(0.0351) 3.384(0.067) Fe-O 4.4(0.4)0.0080(0.0009) 1.996(0.006) 110 -3.32 Fe-Fe₁ 3.0(2.4) 0.0194(0.0094) 3.081(0.034) 0.0058 Fe-Fe₂ 1.3(1.6) 0.0101(0.0079) 3.407(0.018) Fe-O 4.6(0.5)0.0089(0.0011) 1.995(0.008) 120 Fe-Fe₁ 2.9(2.6) 0.0157(0.0073) -3.24 0.0085 3.067(0.026) Fe-Fe₂ 2.3(1.7)0.0178(0.0160) 3.398(0.036) Fe-O 4.4(0.4)0.0085(0.0010) 1.989(0.007) 130 -3.88 0.0069 Fe-Fe₁ 3.0(1.8) 0.0172(0.0082) 3.071(0.033) Fe-Fe₂ 1.7(1.2)0.0119(0.0085) 3.408(0.021) Fe-O 4.8(0.5)0.0095(0.0011) 1.979(0.008) 140 -4.21 0.0075 Fe-Fe₁ 2.5(2.6) 0.0145(0.0082)3.052(0.036) Fe-Fe₂ 1.7(1.8) 0.0125(0.0113) 3.406(0.034) Fe-O 4.8(0.4)0.0098(0.0010)1.975(0.007) 150 -5.68 Fe-Fe₁ 2.3(1.3)0.0138(0.0079) 3.047(0.036) 0.0055 Fe-Fe₂ 1.5(1.0)0.0094(0.0082)3.404(0.026) Fe-O 5.6(0.6) 0.0104(0.0010) 1.965(0.007)160 Fe-Fe₁ 3.5(2.3) 0.0156(0.0056) -7.02 3.056(0.021) 0.0051 0.0106(0.0046) Fe-Fe₂ 2.6(1.8)3.383(0.013)

S.I. 12 Shell by shell fitting results of Fe K-edge EXAFS spectra of the reaction intermediates

during ferrihydrite formation in the Fe system.

S.I. 13 Fitting results of Fe K-edge EXAFS (left) and Fourier transformed spectra of the reaction intermediates during ferrihydrite formation in Al+Fe system (red circles is experimental data; black line is fitting data).

•	•		•				
Time (min)	Path	CN	σ^2	E ₀ (eV)	R(Å)	R factor	
10	Fe-O	4.0(0.3)	0.0035(0.0006)	-0.53	2.007(0.005)	0.0134	
20	Fe-O	3.8(0.3)	0.0040(0.0006)	-0.97	2.014(0.005)	0.0117	
30	Fe-O	3.6 (0.3)	0.0041(0.0007)	-0.11	2.026(0.006)	0.0152	
40	Fe-O	3.3(0.3)	0.0040(0.0009)	0.85	2.037(0.007)	0.0236	
50	Fe-O	3.4(0.3)	0.0045(0.0008)	0.68	2.037(0.007)	0.0201	
60	Fe-O	3.7(0.4)	0.0056(0.0009)	-0.24	2.028(0.007)	0.0199	
70	Fe-O	4.0(0.4)	0.0065(0.0010)	-0.84	2.022(0.008)	0.0155	
70	Fe-Me ₁	0.2(0.2)	0.0003(0.0091)	-0.84	3.049(0.028)	0.0155	
20	Fe-O	4.2(0.4)	0.0072(0.0009)	2.24	2.010(0.006)	0.0107	
80	Fe-Me ₁	0.3(0.2)	0.0004(0.0047)	-2.24	3.044(0.015)	0.0107	
	Fe-O	4.7(0.5)	0.0083(0.0011)		1.998(0.008)		
90	Fe-Me ₁	0.6(1.1)	0.0048(0.0099)	-3.40	3.045(0.030)	0.0096	
	Fe-Me ₂	0.6(0.7)	0.0212(0.0275)		3.361(0.087)		
	Fe-O	5.0(0.5)	0.0092(0.0010)		1.994(0.007)		
100	Fe-Me ₁	1.1(1.9)	0.0133(0.0077)	-2.98	3.047(0.032)	0.0070	
	Fe-Me ₂	0.9(0.7)	0.0094(0.0126)		3.392(0.032)		
	Fe-O	4.7(0.4)	0.0084(0.0009)		1.985(0.007)		
110	Fe-Me ₁	1.5(1.4)	0.0099(0.0063)	-4.76	3.049(0.029)	0.0053	
	Fe-Me ₂	1.1(1.0)	0.0105(0.0130)		3.394(0.043)		
	Fe-O	4.6(0.5)	0.0087(0.0010)		1.987(0.008)		
120	Fe-Me ₁	2.5(2.5)	0.0144(0.0081)	-4.03	3.059(0.036)	0.0071	
	Fe-Me ₂	1.2(1.9)	0.0090(0.0098)		3.404(0.028)		
	Fe-O	4.7(0.5)	0.0093(0.0011)		1.985(0.008)		
130	Fe-Me ₁	2.1(1.9)	0.0111(0.0063)	-4.34	3.047(0.030)	0.0066	
	Fe-Me ₂	1.4(1.6)	0.0115(0.0136)		3.405(0.045)		
	Fe-O	4.9(0.5)	0.0098(0.0011)		1.971(0.008)		
140	Fe-Me ₁	2.2(2.2)	0.0119(0.0080)	-6.15	3.038(0.038)	0.0062	
	Fe-Me ₂	1.3(1.5)	0.0080(0.0101)		3.398(0.034)		
	Fe-O	5.1(0.6)	0.0104(0.0012)	7 71	1.961(0.008)		
150	Fe-Me ₁	2.1(2.3)	0.0125(0.0111)	-/./1	3.018(0.046)	0.0065	
	Fe-Me ₂	0.9(1.2)	0.0033(0.0081)		3.391(0.024)		
	Fe-O	4.8(0.4)	0.0102(0.0010)		1.973(0.007)		
160	Fe-Me ₁	1.9(1.5)	0.0111(0.0078)	-5.80	3.019(0.032)	0.0048	
	Fe-Me ₂	0.6(0.8)	0.0021(0.0086)		3.397(0.025)		

S.I. 14 Shell by shell fitting results of Fe K-edge EXAFS spectra of the reaction intermediates during ferrihydrite formation in the Al+Fe system.

S.I. 15 Fitting results of Fe K-edge EXAFS (left) and Fourier transformed spectra of the reaction intermediates during ferrihydrite formation in Cr+Fe system (red circles is experimental data; black line is fitting data).

e	2		2			
Time (min)	Path	CN	σ^2	E ₀ (eV)	R(Å)	R factor
10	Fe-O	3.8(0.3)	0/.0030(0.0007)	0.16	2.011(0.005)	0.0134
20	Fe-O	3.9(0.3)	0.0042(0.0007)	-0.63	2.017(0.006)	0.0148
30	Fe-O	3.7(0.3)	0.0043(0.0007)	-0.24	2.024(0.006)	0.0152
40	Fe-O	3.6(0.3)	0.0048(0.0009)	0.77	2.034(0.007)	0.0193
50	Fe-O	3.6(0.4)	0.0049(0.0010)	0.35	2.032(0.007)	0.0251
60	Fe-O	3.8(0.4)	0.0057(0.0011)	0.23	2.028(0.008)	0.0290
70	Fe-O	4.2(0.4)	0.0070(0.0009)	0.50	2.017(0.007)	0.0100
/0	Fe-Me ₁	0.3(0.2)	0.0013(0.0054)	-0.59	3.042(0.017)	0.0108
	Fe-O	4.5(0.5)	0.0079(0.0011)		2.012(0.008)	
80	Fe-Me ₁	1.5(1.5)	0.0117(0.0080)	-2.06	3.056(0.036)	0.0088
	Fe-Me ₂	2.8(2.4)	0.0292(0.0420)		3.361(0.065)	
	Fe-O	4.5(0.5)	0.0080(0.0012)		2.009(0.008)	
90	Fe-Me ₁	1.9(1.8)	0.0127(0.0074)	-1.83	3.061(0.031)	0.0102
	Fe-Me ₂	3.9(2.1)	0.0303(0.0353)		3.381(0.056)	
	Fe-O	4.3(0.5)	0.0078(0.0012)		2.002(0.009)	
100	Fe-Me ₁	2.2(1.4)	0.0082(0.0075)	-2.59	3.052(0.024)	0.0104
	Fe-Me ₂	1.3(2.4)	0.0202(0.0419)		3.407(0.111)	
	Fe-O	4.8(0.5)	0.0092(0.0010)		1.993(0.007)	
110	Fe-Me ₁	2.3(2.0)	0.0142(0.0070)	-3.95	3.059(0.028)	0.0066
	Fe-Me ₂	1.5(1.1)	0.0121(0.0100)		3.391(0.026)	
	Fe-O	5.1(0.4)	0.0096(0.0008)	2.05	1.991(0.006)	
120	Fe-Me ₁	2.5(2.7)	0.0194(0.0046)	-3.93	3.065(0.017)	0.0041
	Fe-Me ₂	4.6(3.1)	0.0186(0.0065)		3.389(0.015)	
	Fe-O	4.9(0.4)	0.0095(0.0009)		1.980(0.007)	
130	Fe-Me ₁	2.5(2.0)	0.0138(0.0066)	-5.25	3.045(0.031)	0.0045
	Fe-Me ₂	1.2(1.5)	0.0085(0.0076)		3.395(0.023)	
	Fe-O	5.3(0.6)	0.0107(0.0011)		1.973(0.008)	
140	Fe-Me ₁	2.4(2.2)	0.0129(0.0078)	-6.40	3.036(0.036)	0.0059
	Fe-Me ₂	1.2(1.5)	0.0062(0.0074)		3.386(0.023)	
	Fe-O	4.7(0.5)	0.0100(0.0011)		1.978(0.009)	
150	Fe-Me ₁	1.2(1.0)	0.0059(0.0063)	-6.02	3.021(0.029)	0.0064
	Fe-Me ₂	1.0(1.4)	0.0066(0.0123)		3.419(0.036)	
	Fe-O	3.5(0.7)	0.0058(0.0018)		1.977(0.014)	
160	Fe-Me ₁	1.8(1.8)	0.0092(0.0157)	-4.79	3.026(0.058)	0.0244
	Fe-Me ₂	1.5(1.3)	0.0077(0.0193)		3.413(0.069)	

S.I. 16 Shell by shell fitting results of Fe K-edge EXAFS spectra of the reaction intermediates

during ferrihydrite formation in the Cr+Fe system.

S.I. 17 A proposed conversion pathway of μ -oxo to dihydroxo dimer.

Step 1: dehydration (MIN1 \rightarrow TS1 \rightarrow MIN2): One H₂O molecule is moved from the inner-sphere to the outer-sphere.

Step 2: protonation (MIN2 \rightarrow TS2 \rightarrow MIN3): The μ -oxo O gets one H⁺ from a H₂O molecule. Then the H₂O molecule becomes OH.

Step 3: ring closure (MIN3 \rightarrow 183 \rightarrow MIN4): The OH-binds to the other Fe and forms a ne bridge Fe–OH–Fe, and consequently, the dihydroxo bridge forms.

References

Zhu, M., Frandsen, C., Wallace, A.F., Legg, B., Khalid, S., Zhang, H., Mørup, S., Banfield, J.F., Waychunas, G.A., 2016. Precipitation pathways for ferrihydrite formation in acidic solutions. Geochimica et Cosmochimica Acta 172, 247-264.