Green synthesis of copper oxide nanoparticles using *Ficus elastica* extract for the electrochemical simultaneous detection of Cd²⁺, Pb²⁺, and Hg²⁺

Djihane Slimane Ben Ali^{a,b}, Ferial Krid^{a,c}, MounaNacef^{d*}, El Hadi Boussaha^a, Mohamed

LyamineChelaghmia^d, HabibaTabet^c, RadiaSelaimia^d, Amira Atamnia^{a,b}, Abed Mohamed

Affoune^d

^a Department of Process Engineering, Faculty of Technology, Université 20 Août 1955, El Hadaik Road, Skikda 21000, Algeria.

^bLRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955, Skikda 21000, Algeria.

^c Chemical and Environmental Engineering Research Laboratory, LGCE.

^dL.A.I.G.M, Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algeria.

Fig.S.1.Published documents per year related to Cd²⁺, Pb²⁺, and Hg²⁺ detection (from Science Direct database).

Fig.S.2 (A) Laviron plot for CuONPs/PANI-CPE and (B) Peak currents vs. scan rates.

Fig.S.3 Comparison of SWV on CPE (Black), PANI-CPE (red), and CuONPs/PANI-CPE (Green) electrodes for simultaneous detection of 4.8 µgL⁻¹ Cd²⁺, Pb²⁺, and Hg²⁺ in HCl solution (0.01M).

Fig.S.4 Anodic peak currents on CuONPs/PANI-CPE in HCl(0.01M) 100.0 μ g L⁻¹ Cd ²⁺, Pb²⁺and Hg²⁺ obtained by SWV as function of (a) CuONPs-PANI-CPE, (b) CuONPs/PANI-CPE.

Fig.S.5 (A) CV Curves of CuONPs/PANI-CPE in HCl (0.01M) containing single different concentration of A: Cd²⁺,B: Pb²⁺,C: Hg²⁺.⁺. Insets: the corresponding calibration curves.

Fig.S.6CV Curves for simultaneous analysis of CuONPs/PANI-CPE in HCl (0.01M)containing $[0.2 - 7.8] \mu gl^{-1}$ of Cd²⁺, Pb²⁺and Hg²⁺ at scan rate of 50 mVs⁻¹.Insets : the calibration curve.

Fig. S.7 SWV recorded in Cd²⁺,Pb²⁺and Hg²⁺ (2.6 μgL⁻¹) in HCl(0.01 M) on CuONPs/PANI-CPE for A : repeatability experiments and B : sensor stability over a month.

Sample	Cd^{2+}	Cd^{2+}	Recovery	Pb ²⁺	Pb ²⁺	Recovery	Hg^{2+}	Hg^{2+}	Recovery
	Spiked	Found	(%) Cd ²⁺	Spiked	Found	(%) Pb ²⁺	Spiked	Found	(%) Hg ²⁺
	(µg L ⁻¹)	(µg L ⁻¹)		(µg L ⁻¹)	(µg L ⁻¹)		(µg L ⁻¹)	(µg L ⁻¹)	
Sea	0.0	0.0	-	0.0	0.0	-	0.0	0.4	-
water	0.6	0.7	116.66	0.6	0.6	100	0.6	0.7	116.66
	1.0	1.1	110	1.0	0.98	98	1.0	1.1	110
	1.4	1.5	107.14	1.4	1.3	92.86	1.4	1.6	114.29
	2.6	2.8	107.69	2.6	2.8	107.69	2.6	3.0	115.38
River	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
water	0.6	0.6	100	0.6	0.6	100	0.6	0.7	116.66
	1.0	0.9	90	1.0	1.1	110	1.0	0.9	90
	1.4	1.3	92.85	1.4	1.4	100	1.4	1.6	114.29
	2.6	2.4	92.31	2.6	2.7	103.85	2.6	2.8	107.69
Тар	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
water	0.6	0.6	100	0.6	0.7	116.66	0.6	0.7	116.66
	1.0	0.9	90	1.0	1.1	110	1.0	0.9	90
	1.4	1.5	107.14	1.4	1.6	114.29	1.4	1.3	92.86
	2.6	2.7	103.85	2.6	2.7	103.85	2.6	2.9	111.54
Mineral	0	0.0	-	0.0	0.0	-	0.0	0.0	-
water	0.6	0.6	100	0.6	0.7	116.66	0.6	0.6	100
	1.0	0.9	90	1.0	1.0	100	1.0	0.9	90
	1.4	1.3	92.85	1.4	1.5	107.14	1.4	1.3	92.86
	2.6	2.7	103.84	2.6	2.4	92.31	2.6	2.5	96.15

Table. S.1.Detection of Cd²⁺, Pb²⁺, and Hg²⁺ in real waters using CuONPs/PANI-CPE electrodeby SWV method.

Real-sample analysis of water

Fig.S.8 Schematic illustration of simultaneous determination of Cd²⁺, Pb²⁺and Hg² in real applications.