Supplementary information for

Cu(II)-catalyzed C-N coupling of 2-aminobenzothiazoles with boronic acids at room temperature

Sankaran Radhika,^[a] Aravind Chandravarkar,^[a]Gopinathan Anilkumar^{[a]*}

^[a] School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, India, 686560, <u>anilgi1@yahoo.com, anil@mgu.ac.in</u>

Table of Contents for the Supporting Information

1.	General Remarks	1
2.	Procedure for the synthesis of 2-Aminobenzothiazole derivatives	2
3.	Optimization reactions	2
4.	Compound Characterization Data	5
5.	References	13
6.	¹ H and ¹³ C NMR Spectra of Compounds	13

1. General Remarks

Acetonitrile, DMSO, 1,10-Phenanthroline, copper(II) acetate, Cu(I) iodide, phenylboronic acid, 3-nitro, 3-fluoro, 4-chloro and 2-fluoro phenylboronic acids were acquired from Sigma-Aldrich. DME, DCE, 4-CF₃, 2-methyl and 4-fluoro phenylboronic acids were bought from Spectrochem. Potassium phosphate and 2-aminobenzothiazole were procured from Alfa aeser. 6-Methyl 2-aminobenzothiazole and 2-aminothiazole were obtained from TCI Co., Ltd. Hexane, ethyl acetate and silica gel (100–200 mesh) utilized in column chromatography were purchased from Merck Specialties Pvt. Ltd. We have utilized distilled solvents for all reactions and purification. Reactions were performed in an oven dried 50 mL round bottom flask under stirring at room temperature. The NMR spectra were noted with Bruker-400 MHz NMR spectrometer instrument [400 (¹H) and 100 (¹³C) MHz]. The chemical shift values were defined in 'ppm' relative to TMS (¹H) and CDCl₃ (¹³C) as internal standards. Coupling constants (*J*) were specified in Hertz (Hz). The HRMS and GC-MS were recorded on XEVO G2 Q-TOF (Waters) and Agilent mass spectrometers respectively. Thin layer

chromatography (using Merck Silica Gel 60/UV254) was performed through UV fluorescence and iodine chamber.

2. Procedure for the synthesis of 2-Aminobenzothiazole derivatives.

2-Aminobenzothiazole derivatives (0.50 mmol, 1 *equiv.*) and phenylboronic acid derivatives (0.60 mmol, 1.2 *equiv.*) were taken in an oven dried 50 ml round bottom flask with 3 mL of acetonitrile. To this 10 mol% of Cu(OAc)₂, 20 mol% of 1,10-phenanthroline and 1.5 equiv. of K_3PO_4 were added and stirred well for 24 h at room temperature. The reaction was then quenched by adding distilled water and extracted with ethyl acetate (3x15 mL). Ethyl acetate layer was washed with brine solution, separated and dried using anhydrous sodium sulphate. Organic layer was concentrated and the crude product was purified by column chromatography, employing hexane and ethyl acetate as the eluent.

3. Optimization Reactions

Entry	Copper Salts	Yield (%) of 3a ^{a,b}
1.	CuI	30
2.	CuBr	28
3.	CuBr ₂	51
4.	Cu(OAc) ₂	62
5.	$Cu(O_2C_5H_7)_2$	50
6.	-	nd

Table S1. Screening of various copper salts.

^{a]} Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronic acid (1.2 equiv.), Cu salts (10 mol%), 1,10-phenanthroline (20 mol%), K₃PO₄ (2 equiv.), DME (2 mL), reaction time: 24 h, temperature: RT, air. Open vessel. ^[b] Isolated yield. nd = not detected.

Table S2. Optimization of ligands.

Entry	Ligands	Yield (%) of 3a ^{a,b}
1.	<i>L</i> -Proline	42
2.	DABCO	20
3.	DMEDA	55
4.	Triphenyl phosphine	30
5.	1,10-Phenanthroline	62
6.	2,2'-Bipyridine	60
7.	Ethylene diamine	46
8.	Trans-1,2-diaminocyclohexane	10
9.	Trans-1,2-cyclohexanediol	14
10.	1,1'-Bi-2-naphthol	42
11.	Ethylene glycol	37
12.	-	Traces ^c

^[a] Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronicacid (1.2 equiv.), Cu(OAc)₂ (10 mol%), Ligands (20 mol%), K₃PO₄ (2 equiv.), DME (2 mL), reaction time: 24 h, temperature: RT, air. Open vessel. ^[b] Isolated yield. ^[c]Absence of ligands.

Table S3. Optimization of bases.

Entry	Bases	Yield (%) of 3a ^{a,b}
1	Potassium Carbonate	45
2	Potassium Phosphate	62
3	Potassium Hydroxide	51
4	Cyclohexylamine	36
5	Dicyclohexylamine	27
6	Cesium Carbonate	56

7	Sodium carbonate	39
8	Sodium Hydroxide	46
9.	Triethylamine	20
10	DBU	43
11	DABCO	41
12	Sodium Bicarbonate	19
13	Sodium <i>tert</i> -butoxide	17
14	Lithium <i>tert</i> -butoxide	23
15	Potassium <i>tert</i> -butoxide	19
16	Sodium Acetate	Traces
17	-	18°

[a] Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronicacid (1.2 equiv.), Cu(OAc)₂ (10 mol%), 1,10-Phenanthroline (20 mol%), bases (2 equiv.), DME (2 mL), reaction time: 24 h, temperature: RT, air. Open vessel. ^[b] Isolated yield. ^[c]Absence of bases.

Table S4. Optimization of solvents.

		1 leiu (76) 01 3a
1	DME	62
2	DCE	70
3	DCM	60
4	Acetonitrile	76
5	Chlorobenzene	66
6 Dichlorobenzene		70
7	1,4-Dioxane	45
8	Chloroform	45
9.	Toluene	38
10 DMF		41
11 THF		30
12	12 DMSO	
13	NMP	38

14	Water	20°
15	Ethylene glycol	11
16	2-Propanol	15
17	BuOH	16
18	Ethanol	26
19	Methanol	20

^[a] Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronicacid (1.2 equiv.), Cu(OAc)₂ (10 mol%), 1,10-Phenanthroline (20 mol%), K₃PO₄ (2 equiv.), solvents (2 mL), reaction time: 24 h, temperature: RT, air. Open vessel. ^[b] Isolated yield.^[c] 1 equiv. of TBAB used.

 Table S5. Optimization of time and temperature.

Entry	Time (h)	Temperature (⁰ C)	Yield (%) of 3a ^{a,b}
1.	24	RT	76
2.	24	45	35
3.	24	65	10
4.	18	RT	61
5.	30	RT	73

^{a]} Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronicacid (1.2 equiv.), Cu(OAc)₂ (10 mol%), 1,10-Phenanthroline (20 mol%), K₃PO₄ (2 equiv.), Acetonitrile (2 mL), reaction time: 18-30 h, temperature: RT-65 °C , air. Open vessel. ^[b] Isolated yield.

Entry	Cu(OAc) ₂ (mol%)	1,10-Phenanthroline (mol%)	Yield (%) of 3a ^{a,b}
1.	5	10	68
2.	10	20	76
3.	15	30	60
4.	10	10	63
5.	10	20	75°
6.	10	20	36 ^d
7.	10	20	77°
8.	10	20	19 ^f

Table S6. Optimization of catalyst and ligand loading.

^[a] Reaction conditions: 2-Aminobenzothiazole (1 equiv.), Phenylboronic acid (1.2 equiv.), Cu(OAc)₂ (5-15mol%), 1,10-Phenanthroline (10-30 mol%), K₃PO₄ (2 equiv.), Acetonitrile (2 mL), reaction time: 24 h, temperature: RT, air. Open vessel. ^[b] Isolated yield. ^[c] 1.5 equiv. of K_3PO_4 , ^[d] Excess of O_2 , ^[e] 1.6 equiv. of Phenylboronic acid. ^[f]in N_2 atmosphere.

4. Compound Characterization Data

3a. *N*-Phenylbenzo[*d*]thiazol-2-amine

Chemical Formula: $C_{13}H_{10}N_2S$; Appearance: White spongy powder; Yield: 76%; MP: 158-161 °C (lit.¹158-160 °C); **FT-IR** (neat): 3186, 3126, 2931, 1618, 1325, 1293, 1128 cm⁻¹; ¹**H NMR** (CDCl₃, 400 MHz) δ 7.64-7.60 (m, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.41 (t, J = 8.4 Hz, 2H), 7.34 (t, J = 8.4 Hz, 1H), 7.17 (t, J = 7.6 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 164.2, 151.3, 139.6, 129.9, 129.5, 126.1, 124.3, 122.4, 120.8, 120.0, 119.4 ppm; **HRMS** (QToF): m/z calculated for $C_{13}H_{10}N_2S$ ([M + H]⁺): 227.0643, found: 227.0650.

Chemical Formula: $C_{13}H_9N_3O_2S$; Appearance: Yellow powder; Yield: 72%; MP: 192-194 °C (lit.² 190-193 °C); **FT-IR** (neat): 3123, 3074, 2943, 1616, 1346, 1263, 1129 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 11.02 (brs, 1H), 8.87 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.68-7.62 (m, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H) ppm; ¹³C **NMR** (DMSO-d₆, 100 MHz) δ 161.2, 151.6, 148.3, 141.6, 130.4, 130.0, 126.2, 123.6, 123.0, 121.3, 119.8, 116.4, 111.6 ppm; **HRMS** (QToF): m/z calculated for $C_{13}H_9N_3O_2S$ ([M + H]⁺): 272.0494, found: 272.0484.

3c. N-(4-(Trifluoromethyl)phenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_9F_3N_2S$; Appearance: White powder; Yield: 70%; MP: 187-190 °C (lit.² 189-191 °C); **FT-IR** (neat): 3135, 3036, 2905, 1611, 1316, 1221, 1181 cm⁻¹; ¹**H NMR** (CDCl₃, 400 MHz) δ 7.70-7.62 (m, 6H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H) ppm; ¹³**C NMR** (CDCl₃, 100 MHz) δ 162.1, 151.0, 142.7, 130.0, 126.7 (q, ⁴*J*_{CF} = 3.6 Hz, 2C), 126.4, 125.5, 124.9, 123.2, 120.9, 120.0, 118.2 ppm; **HRMS** (QToF): m/z calculated for $C_{14}H_9F_3N_2S$ ([M + H]⁺): 295.0517, found: 295.0512.

3d. N-(3-(Trifluoromethyl)phenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_9F_3N_2S$; Appearance: White powder; Yield: 51%; MP: 140-142 °C; **FT-IR** (neat): 3189, 3067, 2947, 1602, 1321, 1280, 1183 cm⁻¹; ¹**H** NMR (DMSO-d₆, 400 MHz) δ 10.86 (brs, 1H), 8.29 (s, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆, 100 MHz) δ 161.3, 151.8, 141.3, 130.2, 130.1, 129.7 (q, ² J_{CF} = 32 Hz, 1C), 126.1, 125.6 (q, ¹ $J_{CF} = 270$ Hz, 1C), 122.8, 121.2, 119.7, 118.2, 117.8, 113.6 ppm; **GC-MS** (EI): m/z calculated for $C_{14}H_9F_3N_2S$ (M⁺): 294.0, found: 294.1.

3e. N-(4-Chlorophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{13}H_9ClN_2S$; Appearance: White solid; Yield: 92%; MP: 206-208 °C (lit.¹ 208-209 °C); **FT-IR** (neat): 3174, 3066, 2919, 1615, 1324, 1265, 1130 cm⁻¹; ¹**H** NMR (CDCl₃, 400 MHz) δ 7.66 (d, J = 7.6 Hz, 2H),7.51 (d, J = 8.8 Hz, 2H), 7.38-7.33 (m, 3H), 7.19 (t, J = 8.4 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 163.1, 151.7, 138.4, 130.2,

129.6, 129.0, 126.4, 122.9, 120.9, 120.0, 96.2 ppm; **HRMS** (QToF): m/z calculated for $C_{13}H_9CIN_2S$ ([M + H]⁺): 261.0253, found: 261.0261.

3f. N-(4-Fluorophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{13}H_9FN_2S$; Appearance: White solid; Yield: 90%; MP: 214-217 °C (lit.¹ 216-217 °C); **FT-IR** (neat): 3193, 3054, 2906, 1621, 1327, 1272, 1128 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.51(brs, 1H), 7.80 (d, *J* = 8.0 Hz, 3H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 1H), 7.23-7.13 (m, 3H) ppm; ¹³C NMR (DMSO-d₆, 100 MHz) δ 161.7, 158.6 (d, ¹*J*_{CF} = 237.0 Hz, 1C), 152.1, 137.1, 130.0, 125.9, 122.4, 121.1, 119.4, 119.2, 115.7 (d, ²*J*_{CF} = 22.2 Hz, 2C) ppm; **HRMS** (QToF): m/z calculated for C₁₃H₉FN₂S ([M + H]⁺): 245.0549, found: 245.0551.

3g. N-(3-Fluorophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{13}H_9FN_2S$; Appearance: White spongy solid; Yield: 87%; MP: 139-142 °C; **FT-IR** (neat): 3190, 3062, 2925, 2233, 1608, 1328, 1275, 1159 cm⁻¹; ¹**H** NMR (DMSO-d₆, 400 MHz) δ 10.74 (brs, 1H), 7.93 (d, *J* = 12.0Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.43-7.32 (m, 3H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.83 (t, *J* = 8.4 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆, 100 MHz) δ 163.8 (d, ¹*J*_{CF} = 239.7 Hz, 1C), 161.3, 151.9, 142.3 (d, ³*J*_{CF} = 11.2 Hz, 1C), 130.7 (d, ³*J*_{CF} = 9.6 Hz, 1C), 130.0, 126.1, 122.7, 121.2, 119.6, 113.6, 108.4 (d, ²*J*_{CF} = 21.1 Hz, 1C), 104.7 (d, ²*J*_{CF} = 26.6 Hz, 1C) ppm; HRMS (QToF): m/z calculated for $C_{13}H_9FN_2S$ ([M + H]⁺): 245.0549, found: 245.0547.

3h. N-(2-Chlorophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{13}H_9CIN_2S$; Appearance: White powder; Yield: 40%; MP: 121-124 °C, (lit.² 123-126 °C); **FT-IR** (neat): 3101, 3063, 2239, 1575, 1287, 1110, 1031 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.61-7.53 (m, 2H), 7.40 (d, J = 7.6Hz, 2H), 7.19-7.07 (m, 3H), 6.92 (brs, 1H), 6.55 (d, J = 7.2 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 140.3, 138.1, 134.4, 132.5, 131.7, 130.0, 127.8, 127.4, 126.9, 124.5, 115.9, 115.5, 109.9 ppm; **HRMS** (QToF): m/z calculated for $C_{13}H_9CIN_2S$ ([M + H]⁺): 261.0253, found: 261.0246.

3i. N-(2-Fluorophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{13}H_9FN_2S$; Appearance: White crystals; Yield: 30%; MP: 122-124 °C; **FT-IR** (neat): 3196, 3060, 2915, 1616, 1318,1285, 1124, 1066 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.31 (t, *J*= 8.0 Hz, 1H), 7.71-7.65 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.23-7.05 (m, 4H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 162.4, 153.9 (d, ¹*J*_{CF} = 242.2 Hz, 1C), 151.2, 130.1, 128.2 (d, ³*J*_{CF} = 9.6 Hz, 1C), 126.4, 124.9 (d, ⁴*J*_{CF} = 3.4 Hz, 1C), 124.0 (d, ³*J*_{CF} = 7.2 Hz, 1C), 123. 2, 121.0, 120.5, 120.1, 115.5 (d, ²*J*_{CF} = 18.7 Hz, 1C) ppm; HRMS (QToF): m/z calculated for $C_{13}H_9FN_2S$ ([M + H]⁺): 245.0549, found: 245.0543.

3j. N-(o-Tolyl)benzo[d]thiazol-2-amine

Chemical Formula: C₁₄H₁₂N₂S; Appearance: White crystals; Yield: 49%; MP: 118-120 °C; **FT-IR** (neat): 3065, 2917, 2849, 2236, 1642, 1377, 1287, 1127, 1055 cm⁻¹; ¹H NMR

(CDCl₃, 400 MHz) δ 7.53-7.48 (m, 2H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.15-7.08 (m, 2H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.87 (brs, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 139.7, 137.4, 135.7, 134.0, 131.7, 130.7, 127.1, 126.4, 125.9, 124.4, 117.0, 115.3, 110.1, 20.2 ppm; HRMS (QToF): m/z calculated for C₁₄H₁₂N₂S ([M + H]⁺): 241.0799, found: 241.0794.

3k. N-(4-Methoxyphenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_{12}N_2OS$; Appearance: White solid with purple shade; Yield: 45%; MP: 152-155 °C (lit.¹ 153-155 °C); **FT-IR** (neat): 3179, 3026, 2833, 1617, 1313, 1265, 1166, 1035 cm⁻¹; ¹**H NMR** (CDCl₃, 400 MHz) δ 9.66 (brs, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.8 Hz, 3H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H) ppm; ¹³C **NMR** (CDCl₃, 100 MHz) δ 167.7, 157.5, 151.7, 133.1, 129.7, 126.1, 124.4, 121.9, 120.9, 118.8, 114.9, 55.6 ppm; **HRMS** (QToF): m/z calculated for C₁₄H₁₂N₂OS ([M + H]⁺): 257.0749, found: 257.0745.

Chemical Formula: $C_{14}H_{12}N_2S$; Appearance: White solid; Yield: 67%; MP: 163-166 °C (lit.¹ 165-167 °C); **FT-IR** (neat): 3190, 3053, 2938, 1620, 1301, 1268, 1134, 1029 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.16 (brs, 1H), 7.50-7.38 (m, 6H), 7.18-7.13 (m, 2H), 2.42 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 164.3, 149.2, 140.1, 132.2, 129.9, 129.6, 127.4, 124.2, 120.9, 120.2, 118.9, 21.4 ppm; HRMS (QToF): m/z calculated for $C_{14}H_{12}N_2S$ ([M + H]⁺): 241.0799, found: 241.0790.

6b. 6-Methyl-N-(3-nitrophenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_{11}N_3O_2S$; Appearance: Yellow powder; Yield: 65%; MP: 194-196 °C (lit.² 195-197 °C); **FT-IR** (neat): 3185, 3086, 2919, 1619, 1330, 1279, 1134, 1091 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.98 (brs, 1H), 8.85 (t, J = 2.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.63-7.59 (m, 2H), 7.55 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 2.36 (s, 3H) ppm; ¹³**C NMR** (DMSO-d₆, 100 MHz) δ 160.3, 149.5, 148.3, 141.7, 132.2, 130.2, 130.1, 127.2, 123.5, 121.1, 119.4, 116.1, 111.5, 20.9 ppm; **HRMS** (QToF): m/z calculated for $C_{14}H_{11}N_3O_2S$ ([M + H]⁺): 286.0650, found: 286.0655.

6c. 6-Methyl-N-(4-(trifluoromethyl)phenyl)benzo[d]thiazol-2-amine

Chemical Formula: $C_{15}H_{11}F_3N_2S$; Appearance: White crystals; Yield: 62%; MP: 198-200 °C; **FT-IR** (neat): 3181, 3041, 2921, 1609, 1320, 1203, 1159, 1012 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.83 (brs, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 7.61 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 2.35 (s, 3H) ppm; ¹³**C NMR** (DMSO-d₆, 100 MHz) δ 160.3, 149.7, 144.0, 132.2, 130.2, 126.0 (q, ¹ $J_{CF} = 270$ Hz, 1C), 127.2, 126.3 (q, ⁴ $J_{CF} = 4$ Hz, 2C), 121.8 (q, ² $J_{CF} = 32$ Hz, 1C), 121.0, 119.4, 117.3, 20.9 ppm; **HRMS** (QToF): m/z calculated for $C_{15}H_{11}F_3N_2S$ ([M + H]⁺): 309.0673, found: 309.0695.

6d. N-(4-Chlorophenyl)-6-methylbenzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_{11}ClN_2S$; Appearance: White solid; Yield: 89%; MP: 172-174 °C; **FT-IR** (neat): 3177, 3075, 2904, 1619, 1301, 1248, 1174, 1014 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.55 (brs, 1H), 7.83-7.80 (m, 2H), 7.61 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 2.35 (s, 3H) ppm; ¹³C **NMR** (DMSO- d₆, 100 MHz) δ 160.5, 149.8, 139.6, 131.8, 130.1, 128.8, 127.1, 125.2, 121.0, 119.0, 20.9 ppm; **HRMS** (QToF): m/z calculated for C₁₄H₁₁ClN₂S ([M + H]⁺): 275.0410, found: 275.0408.

6e. N-(4-Fluorophenyl)-6-methylbenzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_{11}FN_2S$; Appearance: White solid; Yield: 86%; MP: 175-177 °C; **FT-IR** (neat): 3201, 3044, 2914, 2849, 1621, 1328, 1285, 1133, 1056 cm⁻¹; ¹**H** NMR (DMSO-d₆, 400 MHz) δ 10.44 (brs, 1H), 7.82-7,79 (m, 2H), 7.56 (s, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 8.8 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 2.34 (s, 3H) ppm; ¹³C NMR (DMSOd₆, 100 MHz) δ 160.9, 158.5 (d, ¹ $J_{CF} = 236.9$ Hz, 1C), 149.9, 137.3, 131.6, 130.1, 127.0, 120.9, 119.3 (d, ³ $J_{CF} = 7.6$ Hz, 2C), 118.9, 115.6 (d, ² $J_{CF} = 22.2$ Hz, 2C), 20.90 ppm; **HRMS** (QToF): m/z calculated for $C_{13}H_9FN_2S$ ([M + H]⁺): 259.0705, found: 259.0704.

6f. N-(3-Fluorophenyl)-6-methylbenzo[d]thiazol-2-amine

Chemical Formula: $C_{14}H_{11}FN_2S$; Appearance: White spongy solid; Yield: 80%; MP: 168-170 °C; **FT-IR** (neat): 3192, 3064, 2921, 1620, 1336, 1237, 1166, 1003 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.66 (brs, 1H), 7.94 (d, *J* = 11.6 Hz, 1H), 7.58 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.42-7.33 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.81 (t, *J* = 8.4 Hz, 1H) 2.34 (s, 3H) ppm; ¹³**C NMR** (DMSO-d₆, 100 MHz) δ 163.7 (d, ¹*J*_{CF} = 239.5 Hz, 1C), 160.5, 149.8, 142.4 (d, ³*J*_{CF} = 11.4 Hz, 1C), 131.9, 130.5 (d, ³*J*_{CF} = 9.6 Hz, 1C), 130.0, 127.1, 120.9, 119.2, 113.4, 108.2 (d, ²*J*_{CF} = 21.1 Hz, 1C), 104.5 (d, ²*J*_{CF} = 26.7 Hz, 1C), 20.8 ppm; **HRMS** (QToF): m/z calculated for C₁₄H₁₁FN₂S ([M + H]⁺): 259.07052, found: 259.07046.

6g. N-(4-Methoxyphenyl)-6-methylbenzo[d]thiazol-2-amine

Chemical Formula: $C_{15}H_{14}N_2OS$; Appearance: White crystals; Yield: 41%; MP: 168-170 °C (lit.² 167-170 °C); **FT-IR** (neat): 3070, 2904, 1679, 1324, 1267, 1164, 1031 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.40-7.35 (m, 4H), 7.10 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 6.78 (brs, 1H), 3.84 (s, 3H), 2.39 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 166.4, 157.2, 149.6, 133.2, 131.8, 129.9, 127.3, 124.0, 120.9, 118.6, 114.8, 55.6, 21.3 ppm; HRMS (QToF): m/z calculated for $C_{15}H_{14}N_2OS$ ([M + H]⁺): 271.0905, found: 271.0908.

8a. N-(4-Chlorophenyl)thiazol-2-amine

Chemical Formula: C₉H₇ClN₂S; Appearance: Off-white crystals; Yield: 28%; MP: 155-159 °C; **FT-IR** (neat): 3187, 3124, 2917, 1612, 1303, 1206, 1182, 1060 cm⁻¹; ¹**H NMR** (DMSO-d₆, 400 MHz) δ 10.34 (s, 1H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.26 (d, *J* = 3.6 Hz, 1H), 6.94 (d, *J* = 3.6 Hz, 1H) ppm; ¹³C NMR (DMSO-d₆, 100 MHz) δ 163.5, 140.2, 138.8, 128.7, 124.3, 118.2, 108.9 ppm; **GC-MS** (EI): m/z calculated for C₉H₇ClN₂S (M⁺): 210, found: 209.9.

5. References

- 1. Q. Ding, B. Cao, X. Liu, Z. Zong, Y. Peng, Green Chem. 2010, 12, 1607.
- 2. N. Khatun, L. Jamir, M. Ganesh, B. K. Patel, RSC Adv. 2012, 2, 11557.

6. ¹H and ¹³C NMR Spectra of Compounds

3a. N-Phenylbenzo[d]thiazol-2-amine

¹H NMR of 3a:

¹³C NMR of 3a:

3b. N-(3-Nitrophenyl)benzo[d]thiazol-2-amine

¹H NMR of 3b:

¹³C NMR of 3b:

3c. N-(4-(Trifluoromethyl)phenyl)benzo[d]thiazol-2-amine

¹H NMR of 3c:

¹³C NMR of 3c:

3d. N-(3-(Trifluoromethyl)phenyl)benzo[d]thiazol-2-amine

¹H NMR of 3d:

¹³C NMR of 3d:

3e. N-(4-Chlorophenyl)benzo[d]thiazol-2-amine

¹H NMR of 3e:

¹³C NMR of 3e:

3f. N-(4-Fluorophenyl)benzo[d]thiazol-2-amine

¹H NMR of 3f:

¹³C NMR of 3f:

3g. N-(3-Fluorophenyl)benzo[d]thiazol-2-amine

¹H NMR of 3g:

¹³C NMR of 3g:

3h. N-(2-Chlorophenyl)benzo[d]thiazol-2-amine

CI NH S Ň

¹H NMR of 3h:

¹³C NMR of 3h:

3i. N-(2-Fluorophenyl)benzo[d]thiazol-2-amine

¹H NMR of 3i:

¹³C NMR of 3i:

3j. N-(o-Tolyl)benzo[d]thiazol-2-amine

¹H NMR of 3j:

¹³C NMR of 3j:

3k. N-(4-Methoxyphenyl)benzo[d]thiazol-2-amine

¹H NMR of 3k:

¹³C NMR of 3k:

6a. 6-Methyl-*N*-phenylbenzo[*d*]thiazol-2-amine

¹H NMR of 6a:

¹³C NMR of 6a:

6b. 6-Methyl-N-(3-nitrophenyl)benzo[d]thiazol-2-amine

6c. 6-Methyl-*N*-(4-(trifluoromethyl)phenyl)benzo[*d*]thiazol-2-amine

¹H NMR of 6c:

6d. N-(4-Chlorophenyl)-6-methylbenzo[d]thiazol-2-amine

6e. N-(4-Fluorophenyl)-6-methylbenzo[d]thiazol-2-amine

¹H NMR of 6e:

¹³C NMR of 6e:

6f. N-(3-Fluorophenyl)-6-methylbenzo[d]thiazol-2-amine

NH. F S Ν

¹H NMR of 6f:

¹³C NMR of 6f:

6g. N-(4-Methoxyphenyl)-6-methylbenzo[d]thiazol-2-amine

¹H NMR of 6g:

8a. N-(4-Chlorophenyl)thiazol-2-amine

¹H NMR of 8a:

