Supporting Information

A new melilite-type rare-earth borate CdTbGaB₂O₇ and multicolor tunable emission in the CdTb_{1-x}Sm_xGaB₂O₇ (0 $\leq x \leq 0.2$) phosphors

Xuean Chen^{a,*}, Jinyuan Zhang^a, Weiqiang Xiao^b and Xiaoyan Song^a

^aFaculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, 100124 Beijing, China ^bBeijing Key Laboratory of Microstructure and Property of Solids, Beijing University of Technology, 100124 Beijing, China

Contents:

- 1. Table S1 Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters U_{eq} (Å²) of CdTbGaB₂O₇ with standard deviations in parentheses.
- 2. **Table S2** Anisotropic displacement parameters U_{ij} (Å²) of CdTbGaB₂O₇ with standard deviations in parentheses.
- 3. Table S3 Selected bond lengths (Å) and angles (°) for CdTbGaB₂O₇.
- 4. Table S4 Correlation table of the internal and external modes of B_2O_7 "pyro" units between the site group of the molecule ($C_{2\nu}$) and the factor group of the crystal (D_{2d}).
- 5. **Table S5** Rietveld refinement results of $CdTb_{1-x}Sm_xGaB_2O_7$ ($0 \le x \le 1$).
- 6. **Table S6** Atomic coordinates, occupancy factors, and isotropic thermal displacement factors obtained from the Rietveld refinements for $CdTb_{1-x}Sm_xGaB_2O_7$ ($0 \le x \le 1$).
- 7. **Fig. S1** A FE-SEM image, typical EDX results, and elemental mapping of the CdTbGaB₂O₇ single-crystal.
- 8. Fig. S2 Infrared and Raman spectra of CdTbGaB₂O₇ and CdSmGaB₂O₇.
- 9. Fig. S3 UV–vis absorption spectra of CdTbGaB₂O₇ (a) and CdSmGaB₂O₇ (b).
- 10. Fig. S4 Rietveld refinements of powder X-ray diffractograms of the $CdTb_{1-x}Sm_xGaB_2O_7$ (x = 0.001, 0.002, 0.005, 0.01, 0.05, 0.1, and 0.2) solid solutions.
- 11. **Fig. S5** Survey (a) and core-level spectra of Cd 3d (b), Tb 3d (c), Sm 4d (d), Ga 3p (e), B 1s (f) and O 1s (g) for CdTb_{0.995}Sm_{0.005}GaB₂O₇.
- 12. Fig. S6 The excitation line of BaSO₄ reference and the PL spectrum of the $CdTb_{0.995}Sm_{0.005}GaB_2O_7$ phosphor collected using an integrating sphere ($\lambda_{ex} = 370$ nm).

Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters U_{eq} (Å²) of CdTbGaB₂O₇ with standard deviations in parentheses.

Atoms	Wyck sites	Site symmetry	Х	Y	Z	Occupancies	U _{eq}
Cd1/Tb1	4e	Cs	0.83827(3)	0.33827(3)	0.49097(7)	0.5/0.5	0.00997(10)
Gal	2a	S_4	1.0000	0.0000	0.0000	1	0.00576(14)
B1	4e	Cs	0.8658(6)	0.6343(6)	0.9369(12)	1	0.0069(9)
01	2c	C_{2v}	1.0000	0.5000	0.8248(12)	1	0.0119(12)
O2	8f	C_1	0.8095(4)	0.0798(4)	0.2140(7)	1	0.0109(6)
O3	4e	Cs	0.8568(5)	0.6432(5)	0.2366(8)	1	0.0139(8)

Note: U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2

Anisotropic displacement parameters U_{ij} (Å²) of CdTbGaB₂O₇ with standard deviations in parentheses.

Atoms	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cd1/Tb1	0.01079(11)	0.01079(11)	0.00832(13)	-0.00376(10)	-0.00376(10)	0.00176(10)
Gal	0.00614(19)	0.00614(19)	0.0050(3)	0.000	0.000	0.000
B1	0.0068(13)	0.0068(13)	0.007(2)	0.0001(12)	-0.0001(12)	-0.0015(17)
01	0.0154(18)	0.0154(18)	0.005(2)	0.000	0.000	0.013(3)
O2	0.0088(13)	0.0155(14)	0.0085(11)	-0.0030(10)	0.0009(11)	0.0032(11)
03	0.0190(14)	0.0190(14)	0.0036(14)	-0.0020(10)	0.0020(10)	0.0059(19)

Table S3

Table 55			
Selected bond lengths	s (Å) and angles (°) f	for CdTbGaB ₂ O ₇ .	
Cd1/Tb1-O1	2.305(4)	Ga1-O2 × 4	1.824(3)
Cd1/Tb1-O2 \times 2	2.316(3)		
Cd1/Tb1-O3	2.401(4)	B1-O3	1.419(7)
Cd1/Tb1-O2 \times 2	2.505(3)	B1-O1	1.492(7)
Cd1/Tb1-O3 \times 2	2.547(3)	$B1-O2 \times 2$	1.525(5)
Mean	2.430	Mean	1.490
$O2$ -Ga1- $O2 \times 4$	107.90(10)	$O3-B1-O2 \times 2$	116.1(3)
O2-Ga1-O2 \times 2	112.7(2)	$O1-B1-O2 \times 2$	102.6(3)
Mean	109.5	O2-B1-O2	102.9(4)
O3-B1-O1	114.6(5)	Mean	109.15

Correlation table of the internal and external modes of B_2O_7 "pyro" units between the site group of the molecule ($C_{2\nu}$) and the factor group of the crystal (D_{2d}).

Species	Assignment	site group symmetry	Factor group symmetry
		$C_{2\nu}$	D_{2d}
	$v_{s}(BO_{3})$	A_1	$A_1 + B_2$
		B_1	Ε
	$v_{as}(BO_3)$	A_1	$A_1 + B_2$
		A_2	$A_2 + B_1$
		B_1	Ε
		B_2	E
B_2O_7	$v_{s}(B^{O}B)$	A_1	$A_1 + B_2$
	$v_{as}(B^{O}B)$	B_1	E
	$\delta(B^{O}B)$	A_1	$A_1 + B_2$
	$\rho(BO_3)$	A_2	$A_2 + B_1$
		\mathbf{B}_2	E
	$\delta(BO_3)$	$\mathbf{3A}_1 + \mathbf{2A}_2 + \mathbf{3B}_1 + \mathbf{2B}_2$	$3A_1 + 2A_2 + 2B_1 + 3B_2 + 5E$
	$T'(B_2O_7)$	$\mathbf{A}_1 + \mathbf{B}_1 + \mathbf{B}_2$	$A_1 + B_2 + 2E$
	$L(B_2O_7)$	$\mathbf{A}_2 + \mathbf{B}_1 + \mathbf{B}_2$	$A_2 + B_1 + 2E$
	Γ	$8A_1 + 5A_2 + 8B_1 + 6B_2$	$8A_1 + 5A_2 + 5B_1 + 8B_2 + 14E$

Note: v_s , symmetric stretching; v_{as} , antisymmetric stretching; δ , bending; ρ , rocking; T', translational mode; L, librational mode; Γ , irreducible representation.

Sm ³⁺ content	x=0	x=0.001	x=0.002	x=0.005	x=0.01	x=0.05	x =0.1	x =0.2	x =1
Space group	PError!2 ₁ m								
<i>a</i> (Å)	7.34374(10)	7.34419(13)	7.34398(9)	7.34405(8)	7.34421(12)	7.34551(13)	7.34683(12)	7.34907(12)	7.37531(10)
<i>c</i> (Å)	4.72012(8)	4.72007(10)	4.72025(7)	4.72030(7)	4.72100(10)	4.72210(10)	4.72337(10)	4.72619(10)	4.75700(8)
$V(Å^3)$	254.558(8)	254.587(10)	254.582(7)	254.590(7)	254.639(10)	254.788(11)	254.948(10)	255.257(10)	258.758(9)
2θ range (°)	5-80	5-80	5-80	5-80	5-80	5-80	5-80	5-80	5-80
R _p , %	2.30	2.54	2.34	2.33	2.63	2.68	2.54	2.66	3.02
R _{wp} , %	3.51	3.91	3.56	3.51	4.09	4.23	3.92	4.00	4.91
GOF	2.03	2.14	2.00	2.02	2.40	2.43	2.21	2.33	2.45

Rietveld refinement results of CdTb_{1-x}Sm_xGaB₂O₇ ($0 \le x \le 1$).

Atomic coordinates, occupancy factors, and isotropic thermal displacement factors obtained from the Rietveld refinements for $CdTb_{1-x}Sm_xGaB_2O_7$ ($0 \le x \le 1$).

CdTbGaB ₂ O ₇	x	У	Z	Occ.	B _{eq}
Cd1/Tb1	0.83725(14)	0.33725(14)	0.4890(7)	0.5/0.5	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
03	0.85680	0.64320	0.23660	1	1.098
$CdTb_{0.999}Sm_{0.001}GaB_{2}O_{7}$	x	у	Ζ	Occ.	\mathbf{B}_{eq}
Cd1/Tb1/Sm1	0.83715(18)	0.33715(18)	0.4883(9)	0.5/0.4995/0.0005	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
O3	0.85680	0.64320	0.23660	1	1.098
$CdTb_{0.998}Sm_{0.002}GaB_2O_7$	x	У	Ζ	Occ.	B _{eq}
Cd1/Tb1/Sm1	0.83727(14)	0.33727(14)	0.4888(7)	0.5/0.499/0.001	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
03	0.85680	0.64320	0.23660	1	1.098
$CdTb_{0.995}Sm_{0.005}GaB_2O_7$	x	У	Z	Occ.	U _{iso.}
Cd1/Tb1/Sm1	0.83748(16)	0.33748(16)	0.4909(7)	0.5/0.4975/0.0025	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
03	0.85680	0.64320	0.23660	1	1.098
$CdTb_{0.99}Sm_{0.01}GaB_2O_7$	x	У	Z	Occ.	U _{iso.}
Cd1/Tb1/Sm1	0.83705(17)	0.33705(17)	0.4877(8)	0.5/0.495/0.005	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
O3	0.85680	0.64320	0.23660	1	1.098

$CdTb_{0.95}Sm_{0.05}GaB_2O_7$	x	У	Ζ	Occ.	U _{iso.}
Cd1/Tb1/Sm1	0.83707(18)	0.33707(18)	0.4885(9)	0.5/0.475/0.025	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
O3	0.85680	0.64320	0.23660	1	1.098
CdTb _{0.9} Sm _{0.1} GaB ₂ O ₇	x	У	Z	Occ.	U _{iso.}
Cd1/Tb1/Sm1	0.83705(17)	0.33705(17)	0.4873(8)	0.5/0.45/0.05	0.7872
Gal	1.00000	0.00000	0.00000	1	0.4548
B1	0.86580	0.63430	0.93690	1	0.5448
01	1.00000	0.50000	0.82480	1	0.9396
O2	0.80950	0.07980	0.21400	1	0.8606
03	0.85680	0.64320	0.23660	1	1.098
$CdTb_{0.8}Sm_{0.2}GaB_2O_7$	x	У	Ζ	Occ.	U _{iso.}
$\frac{CdTb_{0.8}Sm_{0.2}GaB_2O_7}{Cd1/Tb1/Sm1}$	<i>x</i> 0.83706(17)	<i>y</i> 0.33706(17)	z 0.4888(8)	Occ. 0.5/0.4/0.1	U _{iso.} 0.7872
$\frac{CdTb_{0.8}Sm_{0.2}GaB_2O_7}{Cd1/Tb1/Sm1}$ Ga1	x 0.83706(17) 1.00000	<i>y</i> 0.33706(17) 0.00000	z 0.4888(8) 0.00000	Occ. 0.5/0.4/0.1 1	U _{iso.} 0.7872 0.4548
$\begin{tabular}{c} CdTb_{0.8}Sm_{0.2}GaB_2O_7\\ \hline Cd1/Tb1/Sm1\\ Ga1\\ B1 \end{tabular}$	x 0.83706(17) 1.00000 0.86580	<i>y</i> 0.33706(17) 0.00000 0.63430	z 0.4888(8) 0.00000 0.93690	Occ. 0.5/0.4/0.1 1 1	U _{iso.} 0.7872 0.4548 0.5448
$\begin{array}{c} CdTb_{0.8}Sm_{0.2}GaB_2O_7\\ \hline Cd1/Tb1/Sm1\\ Ga1\\ B1\\ O1\\ \end{array}$	x 0.83706(17) 1.00000 0.86580 1.00000	<i>y</i> 0.33706(17) 0.00000 0.63430 0.50000	z 0.4888(8) 0.00000 0.93690 0.82480	Occ. 0.5/0.4/0.1 1 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396
$\begin{tabular}{c} CdTb_{0.8}Sm_{0.2}GaB_2O_7\\ \hline Cd1/Tb1/Sm1\\ Ga1\\ B1\\ O1\\ O2\\ \end{tabular}$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950	<i>y</i> 0.33706(17) 0.00000 0.63430 0.50000 0.07980	z 0.4888(8) 0.00000 0.93690 0.82480 0.21400	Occ. 0.5/0.4/0.1 1 1 1 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606
$\begin{array}{c} CdTb_{0.8}Sm_{0.2}GaB_2O_7\\ \hline Cd1/Tb1/Sm1\\ Ga1\\ B1\\ O1\\ O2\\ O3\\ \end{array}$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320	z 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098
$\begin{tabular}{c} CdTb_{0.8}Sm_{0.2}GaB_2O_7\\ \hline Cd1/Tb1/Sm1\\ Ga1\\ B1\\ O1\\ O2\\ O3\\ \hline CdSmGaB_2O_7\\ \end{tabular}$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x	<i>y</i> 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 <i>y</i>	z 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660 z	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0cc.	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098 U _{iso.}
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x 0.83681(18)	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 y 0.33681(18)	<i>z</i> 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660 <i>z</i> 0.4892(9)	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0 Ccc. 0.5/0.5	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098 U _{iso.} 0.7872
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x 0.83681(18) 1.00000	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 y 0.33681(18) 0.00000	z 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660 z 0.4892(9) 0.00000	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0cc. 0.5/0.5 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098 U _{iso.} 0.7872 0.4548
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x 0.83681(18) 1.00000 0.86580	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 y 0.33681(18) 0.00000 0.63430	<i>z</i> 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660 <i>z</i> 0.4892(9) 0.00000 0.93690	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0 Cc. 0.5/0.5 1 1 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098 U _{iso.} 0.7872 0.4548 0.5448
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x 0.83681(18) 1.00000 0.86580 1.00000	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 y 0.33681(18) 0.00000 0.63430	z 0.4888(8) 0.00000 0.93690 0.82480 0.21400 0.23660 z 0.4892(9) 0.00000 0.93690 0.82480	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0 Ccc. 0.5/0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	U _{iso.} 0.7872 0.4548 0.5448 0.9396 0.8606 1.098 U _{iso.} 0.7872 0.4548 0.5448 0.9396
$\begin{tabular}{ c c c c c c c } \hline CdTb_{0.8}Sm_{0.2}GaB_2O_7 \\ \hline Cd1/Tb1/Sm1 \\ \hline Ga1 \\ B1 \\ O1 \\ O2 \\ O3 \\ \hline CdSmGaB_2O_7 \\ \hline Cd1/Sm1 \\ \hline Ga1 \\ B1 \\ O1 \\ O2 \\ O2 \\ \hline \end{tabular}$	x 0.83706(17) 1.00000 0.86580 1.00000 0.80950 0.85680 x 0.83681(18) 1.00000 0.86580 1.00000 0.80950	y 0.33706(17) 0.00000 0.63430 0.50000 0.07980 0.64320 y 0.33681(18) 0.00000 0.63430 0.50000 0.00000 0.63430 0.50000 0.63430 0.50000 0.7980	$\begin{array}{c} z \\ 0.4888(8) \\ 0.00000 \\ 0.93690 \\ 0.82480 \\ 0.21400 \\ 0.23660 \\ \hline z \\ 0.4892(9) \\ 0.00000 \\ 0.93690 \\ 0.82480 \\ 0.21400 \\ \end{array}$	Occ. 0.5/0.4/0.1 1 1 1 1 1 1 0 Ccc. 0.5/0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} U_{iso.} \\ 0.7872 \\ 0.4548 \\ 0.5448 \\ 0.9396 \\ 0.8606 \\ 1.098 \\ U_{iso.} \\ 0.7872 \\ 0.4548 \\ 0.5448 \\ 0.9396 \\ 0.8606 \\ \end{array}$

Fig. S1 A FE-SEM image, typical EDX results, and elemental mapping of the CdTbGaB₂O₇ single-crystal. Pt element comes from the pretreatment process (A thin layer of Pt was evaporated on the sample surface to provide electrical conductivity).

Fig. S2 Infrared and Raman spectra of CdTbGaB₂O₇ and CdSmGaB₂O₇.

Fig. S3 UV–vis absorption spectra of CdTbGaB₂O₇ (a) and CdSmGaB₂O₇ (b). The insets show the Tauc plots from indirect (left) and direct (right) transitions.

Fig. S4 Rietveld refinements of powder X-ray diffractograms of the $CdTb_{1-x}Sm_xGaB_2O_7$ (x = 0.001, 0.002, 0.005, 0.01, 0.05, 0.1, and 0.2) solid solutions.

Fig. S5 Survey (a) and core-level spectra of Cd 3d (b), Tb 3d (c), Sm 4d (d), Ga 3p (e), B 1s (f) and O 1s (g) for CdTb_{0.995}Sm_{0.005}GaB₂O₇.

Fig. S6 The excitation line of $BaSO_4$ reference and the PL spectrum of the $CdTb_{0.995}Sm_{0.005}GaB_2O_7$ phosphor collected using an integrating sphere ($\lambda_{ex} = 370$ nm); inset shows a local magnification of the PL spectrum.