NiCo₂O₄ nano-Needles as an Efficient Electro-Catalyst for Simultaneous Water Splitting and Dye Degradation

Muhammad Bilal¹, Amna Altaf¹, Ehmen Bint-E-Khalid¹, Hafiza Komal Zafar¹, Nimrah Tahir¹, Ayman Nafady², Md. Abdul Wahab³, Syed Shoaib Ahmad Shah¹, Tayyaba Najam^{4*}, Manzar Sohail^{1*}

¹ Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan

²Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

³ Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street Brisbane, QLD 4000, Australia

⁴ Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Pakistan

*Corresponding author(s):

E-mail address: manzar.sohail@sns.nust.edu.pk, and tayyabanajam@outlook.com

Table S1: Comparison of current densities of different catalysts

Catalyst name	Overpotential (mV)	Electrolyte	On-set potential	Tafel slope	References
			_		

	@ 10 mA cm ⁻²		(V)	(mV dec ⁻¹)	
NiCo ₂ O ₄ (Petals and needle-like morphologies)	170@10 mA cm ⁻²	1 М КОН	1.34	90	This paper
NiCo ₂ O ₄ (Petals and needle-like morphologies)	370@50 mA cm ⁻²	1 М КОН	1.55	90	This paper
NiO	470	1 M KOH	1.60	117	[1]
NiCo ₂ O ₄	430	1M NaOH	1.59	61	[2]
NiCo ₂ O ₄ /NiO	360	1M NaOH	1.41	139	[2]
NiCo ₂ O ₄ nanoflowers	383	1 М КОН	1.50	137	[3]
NiCo ₂ O ₄ hollow nanospheres	428	1 М КОН	1.53	141	[3]
NiCo ₂ O ₄ hollow	520	0.1 M KOH	1.57	150	[4]
NiCo ₂ S ₄ nanoflakes	360	1 M KOH	1.54	131	[5]
NiCo ₂ O ₄ nanowires	271	1 M KOH	1.52	172	[6]
Co ₃ O ₄	498	1 M KOH	1.65	268	[7]
MnCo ₂ O ₄ nanowires	289	1 M KOH	1.53	182	[6]

ZnCo ₂ O ₄ nanosheet	340	1 М КОН	1.52	183	[6]
Ni@ NiO/N–C	390	1M KOH	1.54	100	[8]
3D Gr/Ni-MOF	370	0.1 M KOH	1.57	91	[9]

Figure S1: (a) p-XRD graph of $NiCo_2O_4$ with respective oxides and before and after EC (b) p-XRD of respective oxides

Figure S2: SEM images of NiCo₂O₄ synthesized at different temperatures (a) 50°C, (b)100°C and SDS amount (c) 0.5 g (d) 1.5 g

Figure S3: CV of NiCo₂O₄ synthesized at different (a) temperatures (b) SDS amount.

Figure S4: Circuit for fitting of EIS plots

Figure S5: (a-c) Overpotential of NiCo₂O₄ at 10, 50 and 100 mA, synthesized by using 1g SDS and 100°C temperature.

Figure S6: Double layer capacitance (cdl) of $NiCo_2O_4$ synthesized at different SDS amount (a) 1.5 g, (b) 0.5 g and temperatures (c) $150^{\circ}C$ (d) $50^{\circ}C$

References

- 1. Zhu, C., et al., *Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction.* 2015. **51**(37): p. 7851-7854.
- 2. Mahala, C. and M. Basu, *Nanosheets of NiCo2O4/NiO as Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction*. ACS Omega, 2017. **2**(11): p. 7559-7567.
- 3. Li, Z., et al., Spinel NiCo2O4 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction. 2019. **44**(31): p. 16120-16131.
- 4. Wang, J., et al., *Hierarchical NiCo2O4 hollow nanospheres as high efficient bifunctional catalysts for oxygen reduction and evolution reactions.* 2016. **41**(21): p. 8847-8854.
- 5. Yin, X., et al., 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. 2017. **42**(40): p. 25267-25276.
- 6. Gong, Y., et al., ACo2O4 (A = Ni, Zn, Mn) nanostructure arrays grown on nickel foam as efficient electrocatalysts for oxygen evolution reaction. 2018. **43**(31): p. 14360-14368.
- 7. Liu, G., et al., *Ketjen black carbon supported CoO*@ Co-N-C nanochains as an efficient electrocatalyst for oxygen evolution. 2018. **43**(51): p. 22942-22948.
- 8. Xie, A., et al., *Nickel-based MOF derived Ni @ NiO/N–C nanowires with core-shell structure for oxygen evolution reaction.* Electrochimica Acta, 2019. **324**: p. 134814.
- 9. Xie, A., et al., *Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction.* Electrochimica Acta, 2019. **305**: p. 338-348.