Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Figure 1. pH-zeta of $MnO_2/MgFe-LDH$ and $MnO_2/MgFe-LDO_{400^\circ C}$ composites.

Figure 2. FT-IR diagram of MnO₂, MgFe-LDH, MnO₂/MgFe-LDH and MnO₂/ MgFe-LDO_{400°C}

样品	$S_{BET}/(m^2/g)$	$V_{total}/(cm^2/g)$	D _{BET} /nm
MnO ₂	111.385	0.114	4.096
MgFe-LDH	154.005	0.390	10.135
MnO ₂ / MgFe-LDH	226.794	0.388	6.841
MnO ₂ /MgFe-	153.455	0.589	15.349
LDHO _{400°C}			

Table 1 Analysis of specific surface area and pore size of samples

Material synthesis methods:

The co-precipitation approach was used to prepare $MnO_2/MgFe-LDH$. To prepare the mixed aqueous solution, 4.615 g of $Mg(NO_3)_2.6H_2O$ and 2.424 g of $Fe(NO_3)_3.9H_2O$ were dissolved in 300 mL of DI water. Under vigorous stirring, NaOH was slowly added dropwise to the mixed solution. The pH of the reaction solution was maintained at 11 ± 0.5 by controlling the lowering speed of the NaOH solution. After 48 h of ageing at 60 °C, the KMnO₄ and MnCl₂.4H₂O were carefully added, followed by 4 h of stirring at 30 °C. After ageing for 12 h, the slurry was centrifuged and rinsed numerous times with DI water until the supernatant was neutral. The MnO₂/MgFe-LDH was then dried at 70 °C, and crushed into a powder. Finally, a portion of the MnO₂/MgFe-LDH powder was calcined at 400°C for 5 h in a tube furnace to produce $MnO_2/MgFe-LDO_{400°C}$.