Supporting Information

Lead-free, formamidinium germanium-antimony halide (FA₄GeSbCl₁₂) double perovskite solar cells: effect of band offsets

Karthick Sekar,^{a,b,*} Latha Marasamy,^c Sasikumar Mayarambakam,^{d,*} Hesham Hawashin,^a Mohamad Nour,^b Johann Bouclé^a

- (a) Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000, Limoges, France.
- (b) GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France.
- (c) Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico.
- (d) Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati, 517507, A.P., India.

Table S1. SCAPS-1D input parameters of FTO, TiO₂, FA₄GeSbCl₁₂ and Cu₂O.

Parameters	FTO	TiO ₂	FA ₄ GeSbCl ₁₂	Cu ₂ O
	(TCO)	(ETL)	(Absorber)	(HTL)
Thickness (nm)	500	30	300	100
Bandgap, E _g (eV)	3.50	3.20	1.3	2.17
Affinity, χ (eV)	4.00	3.9	3.50	3.2
Permittivity, ε_r	9.00	9.00	2.59	7.11
Effective density of states at CB, N_c (cm ⁻³)	2.2×10 ¹⁸	2.2×10 ¹⁸	2.2×10 ¹⁸	2.02×10 ¹⁷
Effective density of states at VB, N_v (cm ⁻³)	1.8×10 ¹⁹	1.8×10 ¹⁹	2.0×10 ¹⁸	1.1×10 ¹⁹
Mobility of electrons, μ_n (cm ² V ⁻¹ s ⁻¹)	20	20	2268	200
Mobility of holes, μ_p (cm ² V ⁻¹ s ⁻¹)	10	10	478	80
Density of n-type doping, N_D (cm ⁻³)	1.0×10 ¹⁸	1.0×10 ¹⁹	0	0
Density of p-type doping, N_A (cm ⁻³)	0	1	1.0×10 ¹⁵	1.0×10 ¹⁸
Density of defects, N_t (cm ⁻³)	1.0×10 ¹⁵	1.0×10 ¹⁵	1.0×10 ¹⁶	1.0×10 ¹⁵
Reference	1	2,3	4,5	2,6

Figure S1. Equivalent circuit for Nyquist plots of EIS spectra with respect to the SCAPS-1D impedance data under AM 1.5 spectrum. (a) CBO (- 0.4 eV, 0 eV, + 0.2 eV), VBO (+ 0.57 eV), N_t (1E14 cm⁻³, 1E18 cm⁻³, 1E20 cm⁻³) and absorber thickness (200 nm), (b) VBO (- 0.4 eV and 0 eV), and (c) absorber thickness (1000 nm and 3000 nm), 1000 nm (0 V, 0.3 eV, 0.6 eV), Series resistance ($0.2 \Omega.\text{cm}^2$, $1.4 \Omega.\text{cm}^2$, $2.5 \Omega.\text{cm}^2$) and Shunt resistance ($1k \Omega.\text{cm}^2$, $50k \Omega.\text{cm}^2$, 200k $\Omega.\text{cm}^2$), respectively.

(c)

C₂

		Rs	L	R	CPE or C	R	CPE or C	tau
		$\Omega.cm^2$		$\Omega.cm^2$	F/cm ²	$\Omega.cm^2$	F/cm ²	(LF)
				(HF)	(HF)	(LF)	(LF)	
	- 0.4	0.004		451	6.403E-9	228	1.341E-5	0.0031
СВО	0	0.004		617	6.570E-9	9552	3.512E-6	0.0336
(eV)	+ 0.2	0.004		739	6.566E-9	37041	2.812E-6	0.1042
	- 0.4					0.0195	2.751E-5	5.3745E-7
VBO	0					0.014	3.346E-5	4.6840E-7
(eV)	+0.57	0.045		618	6.562E-9	9554	3.512E-6	0.0336
	E14	0.066		53.45	6.606E-9	10100	4.406E-6	0.0445
Nt	E18	0.044		53.31	6.604E-9	4889	4.437E-6	0.0217
(cm ⁻³)	E20	0.044		40	6.557E-9	85.71	8.531E-6	7.3115E-4
Absor	200	0.051		20	9.85E-9	9172	1.196E-5	0.1097
ber	1000	0.041	0.478	11006	4.32E-9	2035	1.718E-8	3.4969E-5
Thickne ss (nm)	3000	0.046	0.505	10327	4.39E-9	2131	1.722E-8	3.6706E-5
	0 V	0.041	0.478	11006	4.32E-9	2035	1.718E-8	3.4969E-5
1000	0.3 V	0.041	0.333	6738	5.42E-9	1525	1.872E-8	2.8552E-5
(nm)	0.6 V	0.039	0.018	372	7.46E-9	99.63	2.948E-8	2.9371E-6
R _{series}	0.2	0.241	0.477	11006	4.315E-9	2031	1.726E-8	3.5053E-5
$(\Omega.cm^2)$	1.4	1.442	0.477	11005	4.313E-9	2029	1.730E-8	3.5104E-5
	2.5	2.543	0.473	11004	4.273E-9	1996	1.797E-8	3.5878E-5
R _{shunt}	1k	0.044	0.0026	917	3.498E-9	10.93	2.716E-7	2.9688E-6
$(\Omega.cm^2)$	50k	0.044	0.3000	9029	4.074E-9	1276	2.267E-8	2.8924E-5
	200k	0.041	0.4217	10419	4.145E-9	1724	2.063E-8	3.5571E-5

Table S2. Fitted results from the Nyquist Plot of simulated solar cell with different selected parameters (CBO, VBO, N_t, absorber thickness, bias voltage, series and shunt resistances).

Figure S2. Nyquist plots as a function of absorber thicknesses. Note: S signifies the SCAPS impedance data, and F denotes fitted data.

Figure S3. Nyquist plots of solar cell with 1000nm absorber thickness measured at different bias voltage from 0 to 0.7 V.

Parameters	FTO	TiO ₂	en-FASnl ₃	РТАА
	(TCO)	(ETL)	(Absorber)	(HTL)
Thickness (nm)	500	30	300	100
Bandgap, Eg (eV)	3.50	3.20	1.9	2.96
Affinity, χ (eV)	4.00	3.9	3.520	2.3
Permittivity, ε_r	9.00	9.00	8.20	9
Effective density of states at CB, N_c (cm ⁻³)	2.2×10 ¹⁸	2.2×10 ¹⁸	2.2×10 ¹⁸	2.0×10 ²¹
Effective density of states at VB, N_v (cm ⁻³)	1.8×10 ¹⁹	1.8×10 ¹⁹	2.0×10 ¹⁸	2.0×10 ²¹
Mobility of electrons, μ_n (cm ² V ⁻¹ S ⁻¹)	20	20	22	1
Mobility of holes, μ_p (cm ² V ⁻¹ s ⁻¹)	10	10	22	40
Density of n-type doping, N_D (cm ⁻³)	1.0×10 ¹⁸	1.0×10 ¹⁹	0	0
Density of p-type doping, N_A (cm ⁻³)	0	1	7.0×10 ¹⁶	1.0×10 ¹⁸
Density of defects, N_t (cm ⁻³)	1.0×10 ¹⁵	1.0×10 ¹⁵	2.0×10 ¹⁵	1.0×10 ¹⁵
Reference	1	2,3	7–9	6,9

Table S3. SCAPS-1D input parameters of FTO, TiO_2 , en-FASnl₃ and PTAA.

Figure S4. EQE of top and bottom cells.

References

- 1 S. Karthick, S. Velumani and J. Bouclé, *Sol. Energy*, , DOI:10.1016/j.solener.2020.05.041.
- A. A. Kanoun, M. B. Kanoun, A. E. Merad and S. Goumri-Said, *Sol. Energy*, 2019, 182, 237–244.
- 3 A. U. Duha and M. F. Borunda, *Opt. Mater. (Amst).*, 2022, **123**, 111891.
- 4 C. Walkons, R. Murshed and S. Bansal, *Sol. RRL*, 2020, 4, 2000299.
- 5 W. B. Dai, S. Xu, J. Zhou, J. Hu, K. Huang and M. Xu, *Sol. Energy Mater. Sol. Cells*, 2019, **192**, 140–146.
- 6 S. Karthick, J. Bouclé and S. Velumani, *Sol. Energy*, 2021, 218, 157–168.
- 7 W. Ke, C. C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O. Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M. R. Wasielewski and M. G. Kanatzidis, *Sci. Adv.*, , DOI:10.1126/sciadv.1701293.
- 8 S. Abdelaziz, A. Zekry, A. Shaker and M. Abouelatta, *Opt. Mater. (Amst).*, , DOI:10.1016/j.optmat.2020.109738.
- 9 T. Yokoyama, Y. Nishitani, Y. Miyamoto, S. Kusumoto, R. Uchida, T. Matsui, K. Kawano, T. Sekiguchi and Y. Kaneko, ACS Appl. Mater. Interfaces, 2020, 12, 27131–27139.