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1- XRD data of photocatalysts

Table S1: Lattice parameters of the monoclinic cell of pure Ag2CO3 and SO4
2- modified 

Ag2CO3 photocatalysts assessed from all the peaks of XRD patterns of Fig. 1 using the Unit 

Cell software [1].

Lattice constants Pure Ag2CO3 SO4
2--Ag2CO3

Relative 
difference

a (Å) 4.7822 4.8098 +0.6%

b (Å) 9.6118 9.6395 +0.3%

c (Å) 3.2128 3.2178 +0.2%

β (°) 93.22 93.28 +0.1%

Unit cell 
Volume (Å3) 147.45 148.95 +1.0%

2- Grain size distribution

Fig. S1: DLS grain size distribution of (a) pure Ag2CO3 and (b) SO4
2--Ag2CO3.
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3- Optical properties of photocatalysts 

Table S2: Literature data giving representative values of experimental band gap energy (Eg) 

of Ag2CO3, as well as energy of the top of valence band (EVB) and that of the bottom of the 

conduction band (ECB). When they were not available in the cited references, EVB and ECB 

were calculated with the equations given in the sub-section 3.1 of the paper using values of Eg 

and the absolute electronegativity.

Semiconductor 
compounds

Eg 
(eV)

EVB

(eV)
ECB 
(eV)

Ref.

Ag2CO3 2.30 2.67 0.37 [2]
2.31 2.69 0.37 [3]
2.37 2.70 0.30 [4]
2.46 2.75 0.29 [5]
2.50 2.77 0.27 [6]
2.62 2.83 0.21 [7]
2.62 2.83 0.21 This work

SO4
2--Ag2CO3 2.56 2.80 0.24 This work

4- Calculation of Ag+-anion interaction (Pearson model)

According to R.G. Pearson [8], in a system comprising 2 entities, the difference in 

electronegativity () drives the electron transfer. Therefore, considering a cation Ag+ and an 

anion (CO3
2- or SO4

2-) that are brought together, electrons will flow from that of lower 

electronegativity to that of higher  until the chemical potentials are equal. The absolute 

electronegativity and the absolute hardness () regarding the entities forming sulfate-doped 

Ag2CO3 are reported in Table S3. 

For the complex anions, the values were calculated according to the Pearson equations:

 = q/R (1)

 = 1/2R (2)

where q = the charge of the ion and R is the polyatomic radius [9,10]. 
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The values show that when Ag+ and an anion are brought, electrons will flow from the 

complex anion to Ag+ (the anions SO4
2- and CO3

2- are donor D). Assuming only isolated 

systems, the fractional number of e- transferred in these initial Ag+-D interactions (NAg-D) 

can be approximated by [8]:

NAg-D = (+) / [2(Ag+ + )] (3)

The values reported in Table S3 indicate that NAg-D is 38% bigger with SO4
2- compared to 

CO3
2-, which reveals a stronger interaction of the sulfate with the Ag2CO3 crystal lattice.

Table S3: Key data of cation (Ag+) and anions pertinent for the SO4
2- doped Ag2CO3 

photocatalyst. The anions PO4
3- is given for comparison. Data were determined from the 

Pearson approximation [8] using equations reported above and ionic radiusthat 

s [9,10].

Ion Ionic 
radiu
s R 
(nm)

Absolute 
electronegativit
y
 (eV)

Absolut
e 
hardness 
eV




r(NAg-D)

Ref.

Ag+ 0.126 14.53 6.96 N/A [8]
CO3

2- 0.189 10.58 2.65 0.21 [9,10
]

SO4
2- 0.218 9.17 2.29 0.29 [9,10

]
PO4

3- 0.230 13.04 2.17 0.08 [9,10
]
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