Supplementary Information

Synthesis, Characterizations and Properties of Sulfatedoped Silver Carbonate SO₄²⁻-Ag₂CO₃ with Enhanced Visible Light Photocatalytic Performances

Sara Ghazi^{a,b}, Benaissa Rhouta^{a*}, Claire Tendero^b, Francis Maury^b

- a) IMED-Lab, Sciences and Technologies Faculty, Cadi Ayyad University, Avenue Abdelkrim Khattabi, Box 549, Marrakech, Maroc.
- *b) CIRIMAT, Université de Toulouse, CNRS-UPS-INP, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse, cedex 4, France.*

Corresponding author e-mail address: <u>b.rhouta@uca.ma</u>

CONTENT

- 1- XRD data of photocatalysts (Table S1)
- 2- DLS grain size distribution (Fig. S1)
- 3- Optical properties of photocatalysts (Table S2)
- 4- Calculation of Ag⁺-anion interactions by the Pearson model (Table S3)
- 5- References.

1- XRD data of photocatalysts

Table S1: Lattice parameters of the monoclinic cell of pure Ag_2CO_3 and SO_4^{2-} modified Ag_2CO_3 photocatalysts assessed from all the peaks of XRD patterns of Fig. 1 using the Unit

Lattice constants	Pure Ag ₂ CO ₃	SO ₄ ²⁻ -Ag ₂ CO ₃	Relative difference
<i>a</i> (Å)	4.7822	4.8098	+0.6%
b (Å)	9.6118	9.6395	+0.3%
c (Å)	3.2128	3.2178	+0.2%
β (°)	93.22	93.28	+0.1%
Unit cell Volume (Å ³)	147.45	148.95	+1.0%

Cell software	[1]	
---------------	-----	--

2- Grain size distribution

Fig. S1: DLS grain size distribution of (a) pure Ag_2CO_3 and (b) $SO_4^{2-}Ag_2CO_3$.

3- Optical properties of photocatalysts

Table S2: Literature data giving representative values of experimental band gap energy (E_g) of Ag_2CO_3 , as well as energy of the top of valence band (E_{VB}) and that of the bottom of the conduction band (E_{CB}). When they were not available in the cited references, E_{VB} and E_{CB} were calculated with the equations given in the sub-section 3.1 of the paper using values of E_g and the absolute electronegativity.

Semiconductor	Eg	E _{VB}	E _{CB}	Ref.
compounds	(eV)	(eV)	(eV)	
Ag ₂ CO ₃	2.30	2.67	0.37	[2]
	2.31	2.69	0.37	[3]
	2.37	2.70	0.30	[4]
	2.46	2.75	0.29	[5]
	2.50	2.77	0.27	[6]
	2.62	2.83	0.21	[7]
	2.62	2.83	0.21	This work
SO ₄ ²⁻ -Ag ₂ CO ₃	2.56	2.80	0.24	This work

4- Calculation of Ag⁺-anion interaction (Pearson model)

According to R.G. Pearson [8], in a system comprising 2 entities, the difference in electronegativity (χ) drives the electron transfer. Therefore, considering a cation Ag⁺ and an anion (CO₃²⁻ or SO₄²⁻) that are brought together, electrons will flow from that of lower electronegativity to that of higher χ until the chemical potentials are equal. The absolute electronegativity and the absolute hardness (η) regarding the entities forming sulfate-doped Ag₂CO₃ are reported in Table S3.

For the complex anions, the values were calculated according to the Pearson equations:

$\chi = q/R$	(1)
$\eta = 1/2R$	(2)

where q = the charge of the ion and R is the polyatomic radius [9,10].

The $\chi \square$ values show that when Ag⁺ and an anion are brought, electrons will flow from the complex anion to Ag⁺ (the anions SO₄²⁻ and CO₃²⁻ are donor D). Assuming only isolated systems, the fractional number of e⁻ transferred in these initial Ag⁺-D interactions (ΔN_{Ag-D}) can be approximated by [8]:

$$\Delta N_{Ag-D} = (\chi_{\Box \Box^+} - \chi_{\Box}) / [2(\eta_{Ag^+} + \eta_{\Box})]$$
(3)

The values reported in Table S3 indicate that ΔN_{Ag-D} is 38% bigger with SO₄²⁻ compared to CO₃²⁻, which reveals a stronger interaction of the sulfate with the Ag₂CO₃ crystal lattice.

Table S3: Key data of cation (Ag⁺) and anions pertinent for the SO_4^{2-} doped Ag₂CO₃ photocatalyst. The anions PO_4^{3-} is given for comparison. Data were determined from the Pearson approximation [8] using equations reported above and ionic radius that

Ion	Ionic	Absolute	Absolut		Ref.
	radiu	electronegativit	e		
	s R	У	hardness	\Box \Box \Box \Box \Box \Box r \Box \Box \Box (ΔN_{Ag-D})	
	(nm)	χ (eV)	η (eV)		
Ag ⁺	0.126	14.53	6.96	N/A	[8]
CO ₃ ²⁻	0.189	10.58	2.65	0.21	[9,10
]
SO42-	0.218	9.17	2.29	0.29	[9,10
]
PO ₄ ³⁻	0.230	13.04	2.17	0.08	[9,10
]

5- <u>References</u>

- T. J. B. Holland, S. A. T. Redfern, Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineralogical Magazine. 61 (1997) 65–77. https://doi.org/10.1180/minmag.1997.061.404.07.
- G. Dai, J. Yu, G. Liu, A New Approach for Photocorrosion Inhibition of Ag₂CO₃
 Photocatalyst with Highly Visible-Light-Responsive Reactivity, J. Phys. Chem. C. 116
 (2012) 15519–15524. https://doi.org/10.1021/jp305669f.

- W. Jiang, Y. Zeng, X. Wang, X. Yue, S. Yuan, H. Lu, B. Liang, Preparation of Silver Carbonate and its Application as Visible Light-driven Photocatalyst Without Sacrificial Reagent, Photochemistry and Photobiology. 91 (2015) 1315–1323. https://doi.org/10.1111/php.12495
- [4] Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing, S. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C₃N₄ nanosheets loaded with Ag₂CO₃ nanoparticles, Nanoscale, 7 (2015) 758-764. <u>https://doi.org/10.1039/C4NR06565D</u>
- [5] H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, D. Chen, A novel high-efficiency visible-light sensitive Ag₂CO₃ photocatalyst with universal photodegradation performances: Simple synthesis, reaction mechanism and first-principles study, Applied Catalysis B: Environmental. 134–135 (2013) 46–54. https://doi.org/10.1016/j.apcatb.2012.12.041.
- [6] E. Nyankson, B. Agyei-Tuffour, E. Annan, A. Yaya, B. Mensah, B. Onwona-Agyeman,
 R. Amedalor, B. Kwaku-Frimpong, J.K. Efavi, Ag₂CO₃-halloysite nanotubes composite
 with enhanced removal efficiency for water soluble dyes, Heliyon. 5 (2019) e01969.
 https://doi.org/10.1016/j.heliyon.2019.e01969.
- [7] W. Fa, P. Wang, B. Yue, F. Yang, D. Li, Z. Zheng, Ag₃PO₄/Ag₂CO₃ p–n heterojunction composites with enhanced photocatalytic activity under visible light, Chinese Journal of Catalysis. 36 (2015) 2186–2193. https://doi.org/10.1016/S1872-2067(15)61004-X
- [8] R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem. 27 (1988) 734–740. <u>https://doi.org/10.1021/ic00277a030</u>
- H.K. Roobottom, H.D.B. Jenkins, J. Passmore, L. Glasser, Thermochemical Radii of Complex Ions, J. Chem. Educ. 76 (1999) 1570. https://doi.org/10.1021/ed076p1570

 M.C. Simoes, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Estimation of the Thermochemical Radii and Ionic Volumes of Complex Ions, Inorg. Chem. 56 (2017) 7566–7573. https://doi.org/10.1021/acs.inorgchem.7b01205.