Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Figure S1. ¹H NMR spectrum of *B. aegyptiaca* leaf extract in CD₃OD

Figure S2. A) OPLS-DA score plot. B) Loading S-plots derived from mature fruit modeled against immature fruit sample analyzed by 1H-NMR (δ 5.5-10.0 ppm), n = 3, showing the covariance p (1) against the correlation p(cor) (1) of the variables of the discriminating component of the OPLS-DA model. Cut-off values of p = 0.18 was used. C) Permutation plot. Designated variables are highlighted and identifications are discussed in the text

Figure S3. Base peak chromatograms (BPC) of five different organs of *Balanites aegypticae* in positive ionization mode.

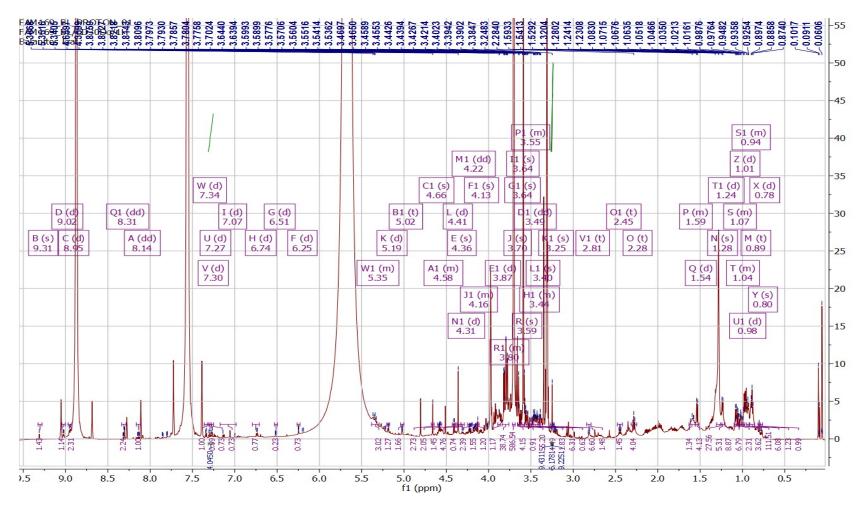
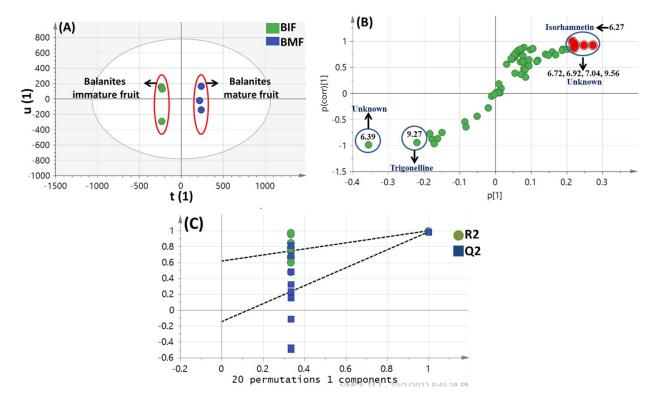
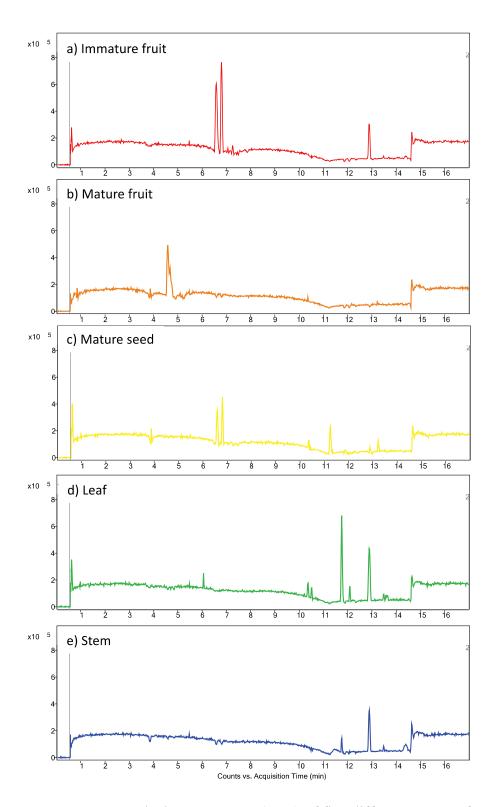
Figure S4. Identification of diosgenin aglycone structure. a) fragmentation pathway scheme of diosgenin aglycone, b) MS/MS mirror match between the diosgenin in *Balanites aegyptica* and GNPS library spectrum, and c) Peak areas of diosgenin aglycone in different organs of *Balanites aegyptica*.

Figure S5. MS/MS fragmentation and abundance of compound 2 (diosgenin-26- hexoside*) in different organs.

Figure S6. MS/MS fragmentation and abundance of compound 3 (diosgenin-3-hexoside).

Figure S7. GC–MS-based OPLS-DA score plot (a) derived from modeling silvlated primary metabolites of Balanites aegyptiaca ripe fruit versus unripe fruit (n = 3). (b) Derived from modeling silvlated primary metabolites of B.aegyptiaca leaf&stem versus other 3 organs(n = 3). (c) and (d)The respective loading S-plots showing the covariance p [1] against the correlation p(cor) [1] of the variables of the discriminating component of the OPLS-DA model. Cut-off values of p < 0.519281 was used. Designated variables are highlighted and identifications are discussed in the text

Table S1: IC_{50} values ($\mu g/mL$) of the plant extracts as determined for the PC-3 prostate cancer and HCT-116 colorectal cancer cell lines by performing MTT and CV assays, respectively.

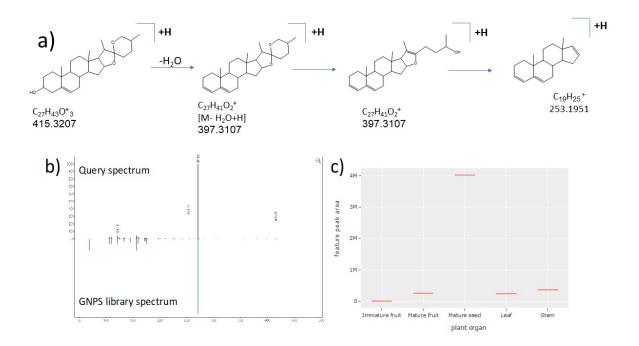

Fig. S1. ¹H NMR spectrum of *Balanites aegyptiaca* leaf extract

Figure S2. A) OPLS-DA score plot. B) Loading S-plots derived from mature fruit modeled against immature fruit sample analyzed by 1H-NMR (δ 5.5-10.0 ppm), n = 3, showing the covariance p (1) against the correlation p(cor) (1) of the variables of the discriminating component of the OPLS-DA model. Cut-off values of p = 0.18 was used. C) Permutation plot. Designated variables are highlighted and identifications are discussed in the text.

Figure S3. Base peak chromatograms (BPC) of five different organs of *Balanites aegypticae* in positive ionization mode.

Figure S4. Identification of diosgenin aglycone structure. a) fragmentation pathway scheme of diosgenin aglycone, b) MS/MS mirror match between the diosgenin in *Balanites aegyptica* and GNPS library spectrum, and c) Peak areas of diosgenin aglycone in different organs of *Balanites aegyptica*.

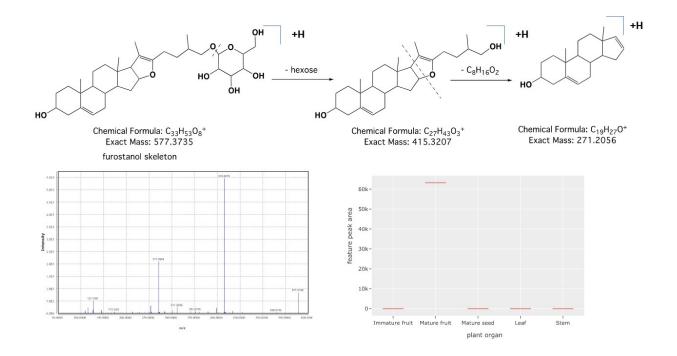


Figure S5. MS/MS fragmentation and abundance of compound 2 (diosgenin-26- hexoside*) in different organs.

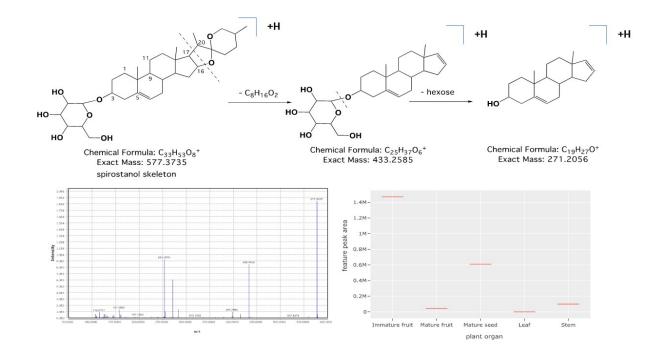
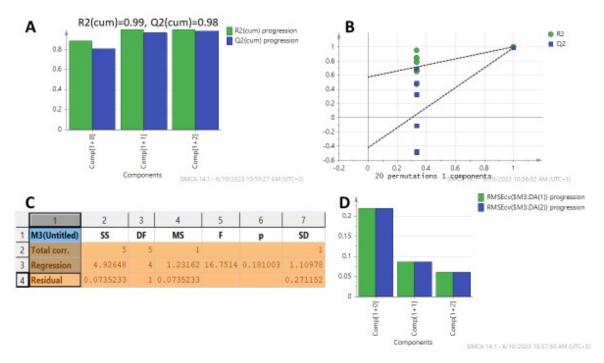



Figure S6. MS/MS fragmentation and abundance of compound 3 (diosgenin-3-hexoside).

Fig. S7. OPLS-DA model validation for modelling *B. aegyptiaca* samples based on LCMS in positive mode **A.** the diagnostic metrics R2 and Q2 **B.** permutation testing. n=20, and **C.** CV-ANOVA to assess for model statistical significance. **D.** SECV residuals.

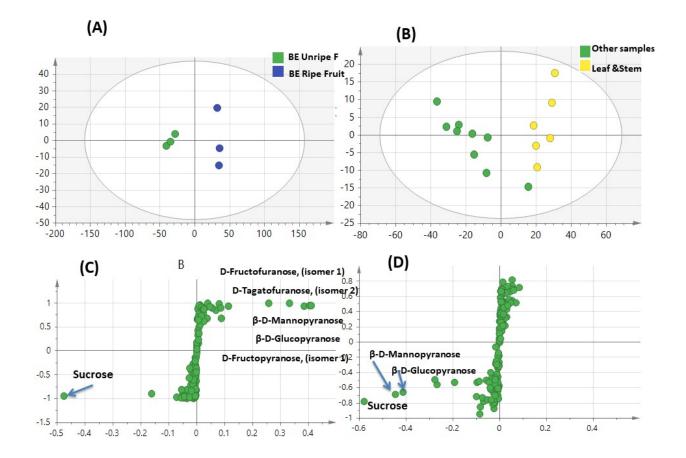


Figure S8. GC–MS-based OPLS-DA score plot (a) derived from modeling silylated primary metabolites of *Balanites aegyptiaca* ripe fruit versus unripe fruit (n = 3). (b) Derived from modeling silylated primary metabolites of *B.aegyptiaca* leaf&stem versus other 3 organs(n = 3). (c) and (d)The respective loading S-plots showing the covariance p [1] against the correlation p(cor) [1] of the variables of the discriminating component of the OPLS-DA model. Cut-off values of p < 0.519281 was used. Designated variables are highlighted and identifications are discussed in the text

Table S1: IC₅₀ values (μ g/mL) of the plant extracts as determined for the PC-3 prostate cancer and HCT-116 colorectal cancer cell lines by performing MTT and CV assays, respectively. The data represent the mean of three independent biological replicates with at least technical duplicates \pm SD.

Relative IC ₅₀ (µg/mL)	PC-3		HCT-116	
	MTT assay	CV assay	MTT assay	CV assay
BS	4.8 ± 1.2	5.6 ± 0.6	6.8 ± 0.5	7.8 ± 1.2
BMF	98.4 ± 19.5	112.6 ± 19.1	> 200	> 200
BST	38.3 ± 7.3	45.6 ± 2.7	47.7 ± 22.0	48.2 ± 18.5
BL	> 200	> 200	> 200	> 200
BIF	2.8 ± 0.3	2.8 ± 0.3	3.4 ± 0.7	3.5 ± 0.4