Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Development of Fluorous Boronic Acid Catalysts Integrated with Sulfur for Enhanced Amidation Efficiency

Kevin Timothy Fridianto,[†] Ya-Ping Wen,[‡] Lee-Chiang Lo*,[‡] and Yulin Lam*,[†]

[†] Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

[‡] Department of Chemistry, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 106, Taiwan

Table of Content

Synthesis of Fluorous Boronic Acid Catalyst 1a	Pages 2 - 4
NMR Spectra of Compounds	Pages 4 - 39
High-Resolution Mass Spectrum of Catalyst 1b	Page 19
HPLC chromatograms of dipeptides 2r and 2s	Page 40

Synthesis of Fluorous Boronic Acid Catalyst 1a

Unless otherwise stated, all starting materials and chemical reagents were purchased from Acros, Fluorochem, Sigma-Aldrich, Strem or TCI and used without further purification. Moisture-sensitive reactions were carried out under nitrogen atmosphere with commercially obtained anhydrous solvents. Analytical thin-layer chromatography (TLC) was carried out on precoated plates (Merck silica gel 60, F254) and visualized with UV light (254 nm) and/or stained with the appropriate staining reagents (described in the reaction procedure below). Purification by column chromatography was performed with either Kieselgel 60 silica gel (Merck, 70-230 mesh or 230 – 400 mesh). NMR spectra (¹H and ¹³C), while purification by fluorous solid-phase extraction (F-SPE) was performed using FluoroFlash[®] F-SPE cartridges (10g, 60 mL tube) that was commercially available and pre-packed in a proprietary silica gel bonded with perfluoroalkyl chains. ¹H NMR (400 MHz). ¹³C NMR (100 MHz), ¹⁹F NMR (376 MHz) and ¹¹B NMR (128 MHz) were recorded at 298 K on a Bruker AVIII (400 MHz) or Bruker DPX (400 MHz) Fourier Transform spectrometer. Chemical shifts are expressed in terms of δ (ppm) relative to δ_H 7.26/ δ_X 77.0 for CDCl₃, $\delta_{\rm H}$ 3.31/ $\delta_{\rm X}$ 49.00 for CD₃OD and $\delta_{\rm H}$ 2.50/ $\delta_{\rm X}$ 39.52 for DMSO- d_6 . Coupling constants (J) are given in hertz (Hz) and the splitting patterns are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectroscopy (IR) spectra were obtained using Varian 640 FT-IR instrument by applying 1% of sample with KBr. IR absorption data are reported in cm⁻¹. Electrospray ionization high resolution mass spectrometry (ESI-HRMS) data were obtained on Waters LCT Premier XE mass spectrometer. Melting points were recorded uncorrected on Fisher-Johns melting point apparatus from Fischer Scientific.

o-tolylboronic acid (**S2**): To a stirred solution of 2-bromotoluene **S1** (5.0 g, 29.2 mmol) in 60 ml anhydrous THF was added n-BuLi (2.5 M in hexanes, 17.5 mL, 43.8 mmol) dropwise at -78 °C. The pale yellow reaction mixture was then stirred for 60 min under argon atmosphere, while the temperature was raised slowly to -60 °C. The temperature was decreased to -78 °C again and trimethyl borate (9.8 mL, 87.7 mmol) was added dropwise. The resulting solution was allowed to warm slowly to room temperature and stirred for another 60 min. The cloudy white mixture was acidified with 1 M HCl (aq) (8 mL) and stirred for 30 min at room temperature. The mixture was then extracted with CH_2Cl_2 (3 x 50 mL) and the combined organic layer was washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. A minimum amount of CH_2Cl_2 (5 mL) was added to dissolve the mixture

and precipitation from excess hexanes yielded the desired pure product as a white solid (1.9 g, 47%). $R_f = 0.20$ (hexane:EtOAc = 8:2, UV, PMA). Mp = 162-164 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89-7.87 (d, *J* = 7.4 Hz, 1H), 7.27-7.23 (m, 1H), 7.17-7.13 (m, 2H), 2.65 (s, 3H) ppm. ¹³C NMR (100 MHz, CD₃OD): δ 141.5 (C), 133.5 (CH), 129.6 (CH), 129.2 (CH), 124.8 (CH), 22.6 (CH₃) ppm. Boron-bound carbon was not detected due to quadrupolar relaxation. ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 30.4 (s, 1B) ppm. IR (KBr): 3073, 3285, 1600, 1446, 1360, 1138, 1101, 1020, 828, 731, 645, 604 cm⁻¹. EI-TOF-MS for C₇H₉O₂B (M⁺) cald. 103.0696, found 136.06092.

(2-(bromomethyl)phenyl)boronic acid (S3). A mixture of *o*-tolylboronic acid S2 (501 mg, 3.7 mmol) azobisisobutyronitrile (12.1 mg, 0.071 mmol) and N-bromosuccinimide (787.1 mg, 4.4 mmol, recrystallizaed from hot water) in CHCl₃ (53 mL) was refluxed for 2 h under argon atmosphere. The resulting yellow rection mixture was cooled to room temperature and evaporated to dryness under reduced pressure. The crude product was dissolved in a minimum amount of CHCl₃ (2 mL) and precipitation from excess hexanes yielded (2-(bromomethyl)phenyl)boronic acid S3 as a pale yellow solid (238 mg, 30%). R_f = 0.18 (hexane:EtOAc = 8:2, UV, PMA). Mp = 153-155 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.74 (d, *J* = 7.3 Hz, 1H), 7.49-7.45 (m, 1H), 7.41-7.39 (m, 1H), 7.33 (t, *J* = 7.3 Hz, 1H), 4.96 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 154.3 (C), 131.0 (CH), 130.9 (CH), 127.2 (CH), 121.8 (CH), 70.4 (CH₂) ppm. Boron-bound carbon was not detected due to quadrupolar relaxation. ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 29.0 (s, 1B) ppm. IR (KBr): 3354, 3297, 1749, 1724, 1606, 1445, 1344, 1213, 1083, 1017, 809, 760, 690, 600 cm⁻¹. EI-TOF-MS for C₇H₈O₂⁷⁹BrB (M⁺) cald. 213.9801, found 213.9797 and C₇H₈O₂⁸¹BrB (M⁺) cald 215.9780, found 215.9774.

(2-(((4,4,5,5,6,6,7,7,8,8,9,9,10.10,11,11,11-heptadecafluoroundecyl)thio)methyl)phenyl)boronic acid (1a). To a stirred solution of sodium hydrosulfide (96 mg, 1.7 mmol) in EtOH (3 mL) was added to compound **6** (503 mg, 0.86 mmol) dissolved in EtOH (5 mL) dropwise and stirred at room temperature for 30 min under argon atmosphere. NaOH (342 mg, 8.6 mmol) dissolved in EtOH (5 mL) was added dropwise into the white cloudy reaction mixture and stirred at room temperature for another 15 min. Compound **S3** (205.9 mg, 0.94 mmol) dissolved in EtOH (5 mL) was added dropwise into the reaction mixture and stirred at room temperature for 17 h. After the completion of reaction, iced-cold deionized water (15 mL) was added into the mixture and the mixture was then extracted with CH₂Cl₂ (3 x 50 mL), brine (1 x 50 mL), dried over Na₂SO₄ and concentrated under reduced pressure, Crude product was purified by fluorous solid-phase extraction (F-SPE) using FluoroFlash[®] F-SPE cartridges (10g, 60 mL tube). The cartridge was first washed with 20% H₂O in MeOH to obtain fractions containing the organic compounds (excess (2-(bromomethyl)phenyl)boronic acid and unwanted by-products) and then washed with 100% MeOH to obtain the fractions containing fluorous compounds. Final product was obtained as a white solid (215 mg, 40%) after evaporation to dryness under vacuum. R_f = 0.25 (hexane:EtOAc = 8:2, UV, PMA). Mp = 77-78 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.02 (2, 2H, OH), 7.50-7.48 (d, *J* = 7.1 Hz, 1H), 7.27-7.18 (m, 3H), 3.94 (s, 2H), 2.482.46 (m, 2H), 2.34-2.20 (m, 2H), 1.77-1.70 (m, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 143.2 (C), 134.6 (CH), 129.2 (CH), 128.8 (CH), 126.1 (CH), 35.2 (CH₂), 29.9 (CH₂), 29.2 (t, *J* = 22.2 Hz, CH₂), 20.0 (CH₂) ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -80.7 (t, *J* = 9.9 Hz, 3F), -113.9 - -114.1 (m, 2F), -121.7 - -121.9 (m, 6F), -122.7 (s, 2F), -123.4 (s. 2F). -126.1 (s, 2F) ppm. ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 29.7 (s, 1B) ppm. IR (KBr): 3469, 3339, 1593, 1141, 1094, 1009, 978, 953, 802, 771, 636, 559, 530 cm⁻¹. EI-TOF-MS for C₁₈H₁₄BO₂F₁₇S (M - H) cald. 627.0458, found 627.0438.

NMR Spectra of Compounds

 $^{13}\text{C},$ DEPT 90 and 135 NMR spectra of compound S2

¹H NMR spectrum of compound S3

¹³C, DEPT 90 and 135 NMR spectra of compound S3

¹H NMR spectrum of catalyst **1a**

 $^{13}\text{C},$ DEPT 90 and 135 NMR spectra of catalyst 1a

¹⁹F NMR spectrum of catalyst **1a**

¹H NMR spectrum of compound 4

¹⁹F NMR spectrum of compound 4

¹³C NMR spectrum of compound **5**

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{5}$

¹H NMR spectrum of compound **6**

¹⁹F NMR spectrum of compound **6**

¹³C NMR spectrum of compound **7**

¹H NMR spectrum of compound **9**

¹H NMR spectrum of compound **10**

¹⁹F NMR spectrum of compound **10**

¹H NMR spectrum of catalyst **1b**

¹³C NMR spectrum of catalyst **1b**

¹¹B NMR spectrum of catalyst **1b**

Meas. m/z	#	Formula	Calc. Mass	Err [ppm]
641.0617	1	C19 H15 [11B] F17 O2 S	641.0609	1.25

High-resolution mass spectrum for catalyst 1b

N-Benzyl-2-phenylacetamide (2a) White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.25 (m, 8H), 7.21-7.19 (m, 2H), 6.12 (s, 1H), 4.42 (d, *J* = 8 Hz, 2H), 3.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 138.0, 134.7, 129.3, 128.9, 128.5, 127.4, 127.3, 127.2, 43.5, 43.4. HRMS (+ESI) calcd. for C₁₅H₁₆NO: 226.1226; found: 226.1225.

¹³C NMR spectrum of compound **2a**

N-Benzylheptanamide (2b) Off-white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.21 (m, 5H), 6.86 (s, 1H), 4.34 (d, *J* = 6 Hz, 2H), 2.17 (t, J = 6 Hz, 2H), 1.62-1.56 (quint, J = 8 Hz, 2H), 1.31-1.25 (m, 6H), 0.88 (t, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 173.3, 138.4, 128.3, 127.3, 126.9, 43.1, 36.3, 31.3, 28.8, 25.6, 22.3, 13.8. HRMS (+ESI) calcd. for C₁₄H₂₂NO: 220.1696; found: 220.1695.

¹³C NMR spectrum of compound **2b**

2-Phenyl-*N*-(*p*-tolyl)acetamide (2c) Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.24-7.15 (m, 7H), 6.94 (d, J = 8.2 Hz, 2H), 3.52 (s, 2H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 135.1, 134.7, 133.9, 129.3, 129.2, 128.8, 127.2, 120.1, 44.3, 20.7. HRMS (+ESI) calcd. for C₁₅H₁₆NO: 226.1226; found: 226.1228.

N-(4-Methoxyphenyl)-2-phenylacetamide (2d) Light brown solid. ¹H NMR (500 MHz, CDCl₃): δ 7.95 (s, 1H), 7.37-7.28 (m, 7H), 6.82-6.79 (m, 2H), 3.77 (s, 3H), 3.65 (s, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 156.3, 134.7, 130.8, 129.3, 128.8, 127.2, 122.0, 113.8, 55.3, 44.1. HRMS (+ESI) calcd. for C₁₅H₁₆NO₂: 242.1176; found: 242.1179.

¹³C NMR spectrum of compound **2d**

N-Octyl-2-phenylacetamide (2e) Off-white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.25 (m, 5H), 5.74 (s, 1H), 3.36 (s, 2H), 3.21-3.16 (q, J = 7 Hz, 2H), 1.41 (quint, J = 7.4 Hz, 2H), 1.30-1.23 (m, 10H), 0.88 (t, J = 6.84 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 135.0, 129.3, 128.8, 127.2, 43.6, 39.6, 31.6, 29.3, 29.0, 26.7, 22.5, 14.0. HRMS (+ESI) calcd. for C₁₆H₂₆NO: 248.2009; found: 248.2010.

¹³C NMR spectrum of compound 2e

N-Benzylpicolinamide (2f) Brownish liquid. ¹H NMR (400 MHz, Acetone-d₆): δ 8.85 (br s, 1H), 8.59-8.57 (dq, J = 4.76, 0.92 Hz, 1H), 8.18-8.16 (dt, J = 7.8, 1.08 Hz, 1H), 7.99-7.94 (td, J = 7.72, 1.72 Hz, 1H), 7.55-7.52 (ddd, J = 7.6, 4.76, 1.24 Hz, 1H), 7.42-7.39 (m, 2H), 7.34-7.29 (m, 2H), 7.26-7.22 (m, 1H), 4.67-4.66 (m, 2H). ¹³C NMR (100 MHz, Acetone-d₆): δ 164.7, 164.6, 151.2, 149.2, 140.5, 140.5, 138.3, 129.2, 128.4, 127.8, 127.1, 122.8, 43.5, 43.4. HRMS (+ESI) calcd. for $C_{13}H_{13}N_2O$: 213.1022; found: 213.1019.

¹³C NMR spectrum of compound 2f

N-Benzylbenzamide (2g) Light brown solid. ¹H NMR (400 MHz, CDCl₃): δ 7.80-7.78 (m, 2H), 7.51-7.48 (m, 1H), 7.43-7.40 (m, 2H), 7.36-7.35 (m, 4H), 7.32-7.28 (m, 1H), 6.52 (s, 1H), 4.65 (d, J = 5.65 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 138.1, 134.3, 131.5, 128.7, 128.6, 127.9, 127.6, 126.9, 44.1. HRMS (+ESI) calcd. for C₁₄H₁₄NO: 212.1070; found: 212.1066.

¹³C NMR spectrum of compound **2g**

Pyrrolidin-2-one (2h) Colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 6.56 (br s, 1H), 3.39 (t, J = 7 Hz, 2H), 2.29 (t, J = 7.6 Hz, 2H), 2.15-2.07 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 179.3, 42.2, 30.0, 20.7. HRMS (+ESI) calcd. for C₄H₈NO: 86.0600; found: 86.0601.

¹³C NMR spectrum of compound **2h**

Piperidin-2-one (2i) Colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (br s, 1H), 3.20-3.17 (m, 2H), 2.22 (t, J = 6.36 Hz, 2H), 1.71-1.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 41.8, 31.1, 21.9, 20.5. HRMS (+ESI) calcd. for C₅H₉NaNO: 122.0576; found: 122.0577.

¹³C NMR spectrum of compound **2i**

Azepan-2-one (2j) Colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ 6.98 (br s, 1H), 3.15-3.12 (m, 2H), 2.40-2.38 (m, 2H), 1.72-1.55 (m, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 179.4, 42.6, 36.5, 30.4, 29.5, 23.0. HRMS (+ESI) calcd. for C₆H₁₂NO: 114.0913; found: 114.0913.

¹³C NMR spectrum of compound **2**j

N-Benzyl-*N*-methyl-2-phenylacetamide (2k) Brownish liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.24 (m, 9H), 7.13-7.11 (d, 1H), 4.64 (s, 1.2H), 4.54 (s, 0.8H), 3.81 (s, 1H), 3.79 (s, 1H), 2.97 (s, 1H), 2.91 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 171.0, 136.9, 136.1, 134.8, 134.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 127.7, 127.4, 127.1, 126.6, 126.5, 126.1, 53.3, 50.7, 40.8, 40.5, 34.9, 33.7. HRMS (+ESI) calcd. for C₁₄H₁₄NO: 240.1383; found: 240.1379.

¹³C NMR spectrum of compound **2k**

1-Morpholino-2-phenylethan-1-one (2l) Brownish solid. ¹H NMR (400 MHz, Acetone-d₆): δ 7.33-7.21 (m, 5H), 3.75 (s, 2H), 3.56-3.47 (m, 8H). ¹³C NMR (100 MHz, Acetone-d₆): δ 169.5, 136.3, 129.3, 128.8, 126.9, 66.8, 66.7, 46.8, 42.3, 40.3. HRMS (+ESI) calcd. for C₁₂H₁₆NO₂: 206.1176; found: 206.1172.

2-Phenyl-1-(pyrrolidin-1-yl)ethan-1-one (2m) Dark brown solid. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.10 (m, 5H), 3.56 (s, 2H), 3.38 (t, J = 6.88 Hz, 2H), 3.31 (t, J = 6.64 Hz, 2H), 1.82-1.68 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 134.4, 128.6, 128.3, 126.4, 46.7, 45.7, 41.8, 25.7, 24.0. HRMS (+ESI) calcd. for C₁₂H₁₆NO: 190.1226; found: 190.1229.

¹³C NMR spectrum of compound **2m**

tert-Butyl (2-(benzylamino)-2-oxoethyl)carbamate (2n) Yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.13 (m, 5H), 6.75 (br s, 1H), 5.35-5.32 (m, 2H), 4.35 (d, J = 5.76 Hz, 2H), 3.73 (d, J = 4.72 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 156.1, 137.9, 128.6, 127.6, 127.4, 80.2, 44.3, 43.3, 28.2. HRMS (+ESI) calcd. for C₁₄H₂₀NaN₂O₃: 287.1366; found: 287.1368.

¹³C NMR spectrum of compound **2n**

tert-Butyl (*S*)-(1-(benzylamino)-4-methyl-1-oxopentan-2-yl)carbamate (2o) Yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.23 (m, 5H), 6.99 (br s, 1H), 5.21-5.19 (m, 1H), 4.44-4.34 (m, 2H), 4.23-4.21 (m, 1H), 1.68 (m, 2H), 1.40 (s, 9H), 0.94 (d, J = 6.65 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 155.8, 138.1, 128.5, 127.4, 127.2, 79.8, 53.0, 43.2, 41.2, 28.2, 24.7, 22.8, 21.9. HRMS (+ESI) calcd. for C₁₈H₂₉N₂O₃: 321.2173; found: 321.2175.

¹³C NMR spectrum of compound **20**

tert-Butyl (*R*)-(1-(benzylamino)-1-oxopropan-2-yl)carbamate (2p) Yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.15 (m, 5H), 6.87 (br s, 1H), 5.25-5.23 (m, 1H), 4.32-4.31 (m, 2H), 4.15 (br s, 1H), 1.31 (s, 9H), 1.29 (d, J = 7.04 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.8, 155.5, 138.0, 128.5, 127.4, 127.3, 80.0, 50.0, 43.2, 28.2, 18.4. HRMS (+ESI) calcd. for C₁₅H₂₂NaN₂O₃: 301.1523; found: 301.1525.

Methyl (*tert*-butoxycarbonyl)glycyl-*L*-phenylalaninate (2q) Colorless paste. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.14 (m, 3H), 7.04-7.02 (d, J = 8 Hz, 2H), 6.63 (br s, 1H), 5.18 (s, 1H), 4.81-4.80 (m, 1H), 3.76-3.68 (m, 1H), 3.63 (s, 3H), 3.09-2.99 (m, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 169.2, 155.9, 135.6, 129.1, 128.7, 127.1, 80.1, 53.0, 52.3, 44.1, 37.8, 28.2. HRMS (+ESI) calcd. for C₁₇H₂₄NaN₂O₅: 359.1577; found: 359.1580.

¹³C NMR spectrum of compound **2**q

Methyl (*tert*-butoxycarbonyl)-*L*-leucyl-*L*-phenylalaninate (2r) Yellowish paste. ¹H NMR (500 MHz, CDCl₃): δ 7.30-7.22 (m, 3H), 7.13-7.11 (m, 2H), 6.73-6.72 (m, 1H) 5.04-5.02 (m, 1H), 4.89-4.83 (m, 1H), 4.14 (s, 1H), 3.71 (s, 3H), 3.17-3.13 (dd, J = 13.9, 5.9 Hz, 1H), 3.10-3.06 (dd, J = 13.75, 6.15 Hz, 1H), 1.45-1.43 (m, 12H), 0.97-0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 172.4, 171.6, 155.6, 135.7, 129.2, 128.5, 127.0, 80.0, 53.2, 53.0, 52.2, 41.1, 37.8, 28.2, 24.6, 22.8, 21.8. HRMS (+ESI) calcd. for C₂₁H₃₃N₂O₅: 393.2384; found: 393.2386.

Methyl *O*-benzyl-*N*-(*tert*-butoxycarbonyl)-*L*-seryl-*L*-methioninate (2s) Yellowish paste. ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.25 (m, 5H), 5.50-5.48 (m, 1H), 4.73-4.70 (m, 1H), 4.55-4.52 (m, 2H), 4.34 (s, 1H), 3.93-3.91 (m, 1H), 3.73 (s, 3H), 3.63-3.58 (m, 1H), 2.47-2.45 (m, 2H), 2.19-2.12 (m, 1H), 2.03 (s, 3H), 2.00-1.92 (m, 1H), 1.45 (m, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 173.1, 170.4, 155.4, 137.2, 128.4, 127.8, 127.7, 127.5, 80.3, 73.4, 69.7, 53.7, 52.4, 51.5, 31.5, 29.6, 28.1, 15.2. HRMS (+ESI) calcd. for C₂₁H₃₂NaN₂O₆S: 463.1873; found: 463.1875.

Methyl (*tert*-butoxycarbonyl)glycyl-*L*-methioninate (2t) Yellowish paste. ¹H NMR (500 MHz, CDCl₃): δ 7.24-7.23 (m, 1H), 5.65 (s, 1H), 4.62-4.58 (m, 1H), 3.73 (br s, 2H), 3.63 (s, 3H), 2.87-2.73 (m, 1H), 2.40 (t, J = 7.7 Hz, 2H), 2.06 (s, 2H), 1.97 (s, 3H), 1.93-1.85 (m, 1H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 172.4, 171.6, 155.6, 135.7, 129.2, 128.5, 127.0, 80.0, 53.2, 53.0, 52.2, 41.1, 37.8, 28.2, 24.6, 22.8, 21.8. HRMS (+ESI) calcd. for C₁₃H₂₄NaN₂O₅S: 343.1298; found: 343.1300.

¹³C NMR spectrum of compound 2t

HPLC chromatograms of dipeptides

Methyl (tert-butoxycarbonyl)-L-leucyl-L-phenylalaninate (2r)

Methyl O-benzyl-N-(tert-butoxycarbonyl)-L-seryl-L-methioninate (2s)

