Supporting Information

K₂CO₃-promoted synthesis of amides from 1-aryl-2,2,2-

trifluoroethanones and amines under mild conditions

Table of contents

1. General information	S2
2. General procedure for the reaction	S2
3. Characterization data	S 3
4. The ¹ H , ¹³ C and ¹⁹ F NMR Spectra of Compounds	S11

1. General information

Unless otherwise noted, all of the reagents were purchased from commercial suppliers and used without purification. Purification of products was conducted by flash chromatography on silica gel (200-300 mesh). Nuclear magnetic resonance (NMR) spectra were measured on a Bruker Avance III 400 (400 MHz). The ¹H NMR (400 MHz) chemical shifts were obtained relative to CDCl₃ as the internal reference (CDCl₃: δ 7.26 ppm). The ¹³C NMR (101 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ 77.16 ppm). The ¹H NMR (400 MHz) chemical shifts were obtained relative to DMSO-d6 as the internal reference (DMSOd6: δ 2.50 ppm). The ¹³C NMR (101 MHz) chemical shifts were given using DMSOd6 as the internal standard (DMSO-d6: δ 39.9 ppm).Chemical shifts are reported in ppm using tetramethylsilane as internal standard (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet). Compounds described in the literature were characterized by the comparison of ¹H and/or ¹³C NMR spectra to the previously reported data. HRMS data were obtained on a VG ZAB-HS mass spectrometer, Brucker Apex IV FTMS spectrometer.

2. General procedure for the reaction

1-Aryl-2,2,2-trifluoroethanones 1 (0.2 mmol, 1.0 equiv.), amines 2 (0.24 mmol, 1.2 equiv.) and K_2CO_3 (0.4 mmol, 2.0 equiv.) were mixed with DMSO (2 mL) at 40 °C in an oil bath under air for 4 h. After completion of reaction as indicated by TLC, the reaction was cooled to room temperature, the reaction mixture was diluted with water (10 mL) and extracted three times with EtOAc (10 mL). The solvent was removed under vacuum and the residue was purified by silica gel chromatography, using a mixture of petroleum ether/ethyl acetate to give the desired product **3**.

3. Characterization data

N-ethylbenzamide (3a).¹ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3a (93%, 27.8 mg), white solid, mp 69-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.8 Hz, 2H), 7.47 (t, *J* = 6.9 Hz, 1H), 7.43 – 7.35 (m, 2H), 6.37 (s, 1H), 3.52 – 3.42 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 134.9, 131.4, 128.6, 127.0, 35.0, 15.0.

N-ethyl-4-methylbenzamide (3b).¹ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3b (70%, 22.8 mg), white solid, mp 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.38 (s, 1H), 3.50 – 3.41 (m, 2H), 2.36 (s, 3H), 1.21 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 141.7, 132.0, 129.2, 126.9, 34.9, 21.5, 15.0.

N-ethyl-3-methylbenzamide (3c).² Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3c (91%, 29.8 mg), white oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.54 – 7.48 (m, 1H), 7.26 – 7.20 (m, 2H), 6.54 (s, 1H), 3.46 – 3.39 (m, 2H), 2.32 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 138.3, 134.8, 132.0, 128.4, 127.7, 123.9, 34.9, 21.3, 14.9.

4-Methoxy-*N***-ethylbenzamide** (3d).¹ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3d (91%, 32.6 mg), white solid, mp 69-70 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.55 (s, 1H), 3.79 (s, 3H), 3.47 – 3.37 (m, 2H), 1.18 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 161.9, 128.7, 127.1, 113.6, 55.4, 34.9, 15.0.

4-Bromo-*N***-ethylbenzamide** (3e).³ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded **3e** (77%, 35.1 mg), white solid, mp 107-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 6.66 (s, 1H), 3.47 – 3.37 (m, 2H), 1.19 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 133.6, 131.7, 128.6, 126.0, 35.1, 14.8.

4-Fluoro-*N***-ethylbenzamide** (**3f**).³ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded **3f** (87%, 29.1 mg), white solid, mp 74-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.70 (m, 2H), 7.01 (t, *J* = 8.2 Hz, 2H), 6.63 (s, 1H), 3.46 – 3.37 (m, 2H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 164.6 (d, *J* = 251.3 Hz), 131.0 (d, *J* = 3.1 Hz), 129.3 (d, *J* = 8.9 Hz), 115.5 (d, *J* = 21.9 Hz), 35.1, 14.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.76 (m).

3,5-Dichloro-*N*-ethylbenzamide (3g). Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3g (66%, 40.6 mg), white solid, mp 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.43 – 7.37 (m, 1H), 6.97 (s, 1H), 3.47 – 3.40 (m, 2H), 1.21 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 137.7, 135.3, 131.1, 125.7, 35.3, 14.7. HRMS (ESI) m/z: calcd for C₉H₁₀NOCl₂ [M+H]⁺: 218.0134; found: 218.0142.

N-(2,2-difluoroethyl)benzamide (3h).⁴ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3h (93%, 34.4 mg), white solid, mp 73-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.51 (t, *J* = 7.1 Hz, 1H), 7.45 – 7.36 (m, 2H), 6.95 (s, 1H), 5.93 (tt, *J* = 56.8, 4.3 Hz, 1H), 3.88 – 3.69 (m,

2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 133.5, 132.1, 128.7, 127.2, 113.8 (t, *J* = 241.4 Hz), 42.3 (t, *J* = 26.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -122.72 (dt, *J* = 56.0, 14.7 Hz).

N,*N*'-dibenzoyl-1,2-ethylenediamine (3i).⁵ Purification by column chromatography

(petroleum ether/ethyl acetate, 1:1 v/v) afforded **3i** (52%, 27.9 mg), white solid, mp 240-242 °C. ¹H NMR (400 MHz, DMSO) δ 8.61 (s, 2H), 7.85 (d, *J* = 7.2 Hz, 4H), 7.56 – 7.49 (m, 2H), 7.49 – 7.41 (m, 4H), 3.50 – 3.41 (m, 4H). ¹³C NMR (101 MHz, DMSO) δ 166.6, 134.6, 131.1, 128.3, 127.2, 39.2.

N-phenylbenzamide (3j).⁶ Purification by column chromatography (petroleum ether/ethyl acetate, 10:1 v/v) afforded 3j (55%, 21.8 mg), white solid, mp 150-151 °C. ¹H NMR (400 MHz, DMSO) δ 10.29 (s, 1H), 7.98 (d, *J* = 7.2 Hz, 2H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.56 – 7.48 (m, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 165.6, 139.2, 135.0, 131.6, 128.6, 128.4, 127.7, 123.7, 120.4.

N-(4-nitrophenyl)-benzamide (3k).⁶ Purification by column chromatography

(petroleum ether/ethyl acetate, 10:1 v/v) afforded **3k** (40%, 19.2 mg), yellow solid, mp 190-192 °C. ¹H NMR (400 MHz, DMSO) δ 10.79 (s, 1H), 8.25 (d, *J* = 9.3 Hz, 2H), 8.05 (d, *J* = 9.3 Hz, 2H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.58 – 7.50 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 166.3, 145.5, 142.5, 134.2, 132.2, 128.5, 127.9, 124.8, 119.9.

N-(4-methoxyphenyl)-benzamide (31).⁷ Purification by column chromatography

(petroleum ether/ethyl acetate, 5:1 v/v) afforded **31** (46%, 20.9 mg), white solid, mp 151-152 °C. ¹H NMR (400 MHz, DMSO) δ 10.17 (s, 1H), 7.96 (d, *J* = 7.0 Hz, 2H), 7.70 (d, *J* = 9.0 Hz, 2H), 7.60 – 7.49 (m, 3H), 6.93 (d, *J* = 9.0 Hz, 2H), 3.74 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 165.2, 155.6, 135.1, 132.3, 131.4, 128.4, 127.6, 122.0, 113.8, 55.2.

N-benzoylbenzylamine (3m).³ Purification by column chromatography (petroleum

ether/ethyl acetate, 3:1 v/v) afforded **3m** (94%, 39.7 mg), white solid, mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.7 Hz, 2H), 7.46 (t, J = 7.1 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.30 (s, 5H), 6.92 (s, 1H), 4.57 (d, J = 5.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 138.3, 134.4, 131.5, 128.6, 127.8, 127.5, 127.1, 44.0.

N-[(4-methylphenyl)methyl]benzamide (3n).⁸ Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3n (96%, 43.2 mg), white solid, mp 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.22 (d, *J* = 7.6 Hz, 2H), 7.14 (d, *J* = 7.7 Hz, 2H), 6.84 (s, 1H), 4.55 (d, *J* = 5.4 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 137.2, 135.3, 134.5, 131.5, 129.4, 128.5, 127.9, 127.1, 43.8, 21.2.

N-(4-methoxybenzyl)benzamide (30).⁹ Purification by column chromatography

(petroleum ether/ethyl acetate, 3:1 v/v) afforded **30** (95%, 45.8 mg), white solid, mp 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.7 Hz, 2H), 7.44 (t, J = 6.8 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.22 (d, J = 8.4 Hz, 2H), 6.97 – 6.76 (m, 3H), 4.50 (d, J = 3.8 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 159.0, 134.4, 131.4, 130.4, 129.2, 128.5, 127.1, 114.1, 55.3, 43.5.

N-[(4-fluorophenyl)methyl]benzamide (3p).¹⁰ Purification by column

chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded **3p** (95%, 43.5 mg), white solid, mp 116-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.7 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.26 – 7.18 (m, 2H), 7.13 (s, 1H), 7.01 – 7.87 (m, 2H), 4.49 (d, J = 5.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 163.3, 160.9, 134.2, 131.6, 129.4, 128.6, 127.1, 115.6, 115.4, 43.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.18.

N-[(4-chlorophenyl)methyl]benzamide (3q).⁸ Purification by column

chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded **3q** (92%, 45.2 mg), white solid, mp 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.31 – 7.19 (m, 4H), 6.71 (s, 1H), 4.55 (d, *J* = 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 136.9, 134.2, 133.4, 131.8, 129.3, 128.9, 128.7, 127.1, 43.4.

N,*N*-dimethylbenzamide (3r).⁷ Purification by column chromatography (petroleum

ether/ethyl acetate, 2:1 v/v) afforded **3r** (51%, 15.2 mg), white solid, mp 42-43 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 3.09 (s, 3H), 2.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 136.4, 129.6, 128.4, 127.1, 39.7, 35.4.

Phenyl(pyrrolidin-1-yl)methanone (3s).¹¹ Purification by column chromatography

(petroleum ether/ethyl acetate, 3:1 v/v) afforded **3s** (90%, 31.5 mg), white solid, mp 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 2H), 7.39 – 7.27 (m, 3H), 3.64 – 3.54 (m, 2H), 3.39 – 3.31 (m, 2H), 1.94 – 1.85 (m, 2H), 1.84 – 1.76 (d, *J* = 5.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 137.2, 129.7, 128.2, 127.0, 49.6, 46.2, 26.4, 24.4.

Phenyl(piperidin-1-yl)methanone (3y).¹¹ Purification by column chromatography

(petroleum ether/ethyl acetate, 3:1 v/v) afforded **3y** (81%, 30.7 mg), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 3.76 – 3.59 (m, 2H), 3.38 – 3.23 (m, 2H), 1.68 – 1.57 (m, 4H), 1.52 – 1.42 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 136.5, 129.3, 128.4, 126.8, 48.8, 43.1, 26.6, 25.7, 24.6.

Morpholino(phenyl)methanone (3u).¹¹ Purification by column chromatography

(petroleum ether/ethyl acetate, 3:1 v/v) afforded **3u** (81%, 30.7 mg), white solid, mp 74-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.30 (m, 5H), 3.79 – 3.38 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 135.3, 129.9, 128.6, 127.1, 66.9, 48.2, 42.6.

Hippuric acid tert-butyl ester (3v).¹² Purification by column chromatography

(petroleum ether/ethyl acetate, 3:1 v/v) afforded **3v** (71%, 33.4 mg), yellow solid, mp 110-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.47 (t, *J* = 6.8 Hz, 1H), 7.43 – 7.35 (m, 2H), 6.77 (s, 1H), 4.10 (d, *J* = 4.7 Hz, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 167.3, 133.8, 131.7, 128.5, 127.0, 82.5, 42.5, 28.0.

N-(4-methylbenzoyl)glycine 1,1-dimethylethyl ester (3w). Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3w (51%, 25.5 mg), yellow solid, mp 111-112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.4 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 6.73 (s, 1H), 4.09 (d, *J* = 4.7 Hz, 2H), 2.35 (s, 3H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 167.3, 142.2, 131.1, 129.3, 127.1, 82.5, 42.5, 28.1, 21.5. HRMS (ESI) m/z: calcd for C₁₄H₁₉NNaO₃ [M+Na]⁺: 272.1257; found: 272.1274.

N-(4-chlorobenzoyl)glycine 1,1-dimethylethyl ester (3x). Purification by column chromatography (petroleum ether/ethyl acetate, 3:1 v/v) afforded 3x (81%, 43.7 mg), yellow solid,mp 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 6.87 (s, 1H), 4.09 (d, *J* = 4.9 Hz, 2H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 166.3, 138.0, 132.2, 128.9, 128.6, 82.7, 42.6, 28.1. HRMS (ESI) m/z: calcd for C₁₃H₁₆NNaO₃Cl [M+Na]⁺: 292.0711; found: 292.0728.

Procainamide (4).¹³ Purification by column chromatography (dichloromethane /methanol, 10:1 v/v) afforded 4 (72%, 33.9 mg), white solid, mp 45-46 °C. ¹H NMR (400 MHz, DMSO) δ 8.49 (s, 1H), 7.63 (d, J = 8.1 Hz, 2H), 6.53 (d, J = 8.1 Hz, 2H), 5.69 (s, 2H), 3.59 – 3.52 (m, 2H), 3.15 – 2.99 (m, 6H), 1.19 (t, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, DMSO) δ 166.6, 151.9, 128.9, 120.7, 112.6, 50.9, 46.9, 35.5, 10.0.

Moclobemide (5).¹⁴ Purification by column chromatography (dichloromethane /methanol, 5:1 v/v) afforded 5 (89%, 47.8 mg), white solid, mp 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 6.88 (s, 1H), 3.73 – 3.61 (m, 4H), 3.52 – 3.43 (m, 2H), 2.54 (t, *J* = 5.8 Hz, 2H), 2.44 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 137.6, 133.0, 128.8, 128.4, 67.0, 56.9, 53.4, 36.2.

References:

(1) Guo, Y. F.; Ren, T. L.; Xu, B. H.; Wang, Y. F.; Zhang, S. J. Asian J. Org. Chem. 2016, 5, 568-574.

(2) Ali, T. H.; Heidelberg, T.; Hussen, R. S. D. Synlett. 2015, 26, 1361-1364.

(3) Ghosh, S. C.; Ngiam, J. S. Y.; Seayad, A. M.; Tuan, D. T.; Johannes, C. W.; Chen, A. *Tetrahedron Lett.* **2013**, *54*, 4922-4925.

(4) Srivastava, V.; Singh, P. K.; Singh, P. P. Tetrahedron Lett. 2019, 60, 40-43.

(5) Zhang, Z.; Yin, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2003, 5, 3399-3402.

(6) Zhong, P.; Wu, J.; Wu, J.; Liu, K.; Wan, C.; Liu, J. Tetrahedron Lett. 2022, 107, 154099.

(7) Zhang, L.; Wang, W.; Zhang, T.; Wang, A.; Cui, Y.; Yang, X.; Huang, Y.; Liu, X.; Liu, W.;

Son, J.; Oji, H. Green Chem. 2013, 15, 2680-2684.

(8) Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J. 2011, 17, 1021-1028.

(9) Rodríguez-Lugo, R. E.; Trincado, M.; Grützmacher, H. ChemCatChem. 2013, 5, 1079-1083.

(10) Xu, X.; Feng, H.; Huang, L.; Liu, X. J. Org. Chem. 2018, 83, 7962-7969.

(11) Yang, G.; Li, K.; Liu, W.; Zeng, K.; Liu, Y. Org. Biomol. Chem. 2020, 18, 6958-6964.

(12) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750-5753.

(13) Annunziata, F.; Letizia Contente, M.; Betti, D.; Pinna, C.; Molinari, F.; Tamborini, L.; Pinto, A. *Catalysts* **2020**, *10*, 939.

(14) Braddock, D. C.; Lickiss, P. D.; Rowley, B. C.; Pugh, D.; Purnomo, T.; Santhakumar, G.; Fussell, S. J. Org. Lett. 2018, 20, 950-953.

4. The ¹H and ¹³C NMR Spectra of Compounds

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3a**

 ^1H NMR spectrum (400 MHz, CDCl₃) of compound 3b

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3c**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3d**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3e**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3g**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3h**

¹H NMR spectrum (400 MHz, DMSO-d6) of compound **3**l

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3m**

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3n**

S28

S31

S33

S34

¹H NMR spectrum (400 MHz, CDCl₃) of compound 3v

¹H NMR spectrum (400 MHz, CDCl₃) of compound **3**x

¹H NMR spectrum (400 MHz, CDCl₃) of compound 5