First-principles study on the structure and electronic properties of M_2CS_x (M=Sc, Ti, Y, Zr and Hf, x= 1, 2)

Huaijin Zhu^{a,b}, Nianxiang Qiu^{b*}, Gang Fang^b, Shiyu Du^{b,c,d,e*}

^aFaculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 351201, China

^bEngineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China.

^cSchool of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China

^dSchool of Computer Science, China University of Petroleum (East China), Qingdao, 266580, China ^eMilky-Way Sustainable Energy Ltd, Zhuhai, China

*Corresponding Authors: E-mail: <u>giunianxiang@nimte.ac.cn</u> and <u>dushiyu@nimte.ac.cn</u>

Figure S1. The top and side views of six possible configurations (**A-D**) of stoichiometric M_2CS_2 (M=Sc, Ti, Y, Zr and Hf). Cyan, yellow and brown spheres represent M, S and C atoms, respectively. **A:** The S layers on both sides are directly projected to the middle C layer, **B:** The S layers on both sides are directly projected to the bottom M layer, **C:** The S layer on one side is directly projected to the middle C layer and the S layer on the other side is directly projected to the bottom M layer, **D:** The S atoms on both sides are located on the top of M atoms.

_					
		А	В	С	D
_	Sc ₂ CS ₂	-35.83	-35.02	-36.17	-32.27
	Ti_2CS_2	-38.88	-40.07	-39.38	-36.01
	Y_2CS_2	-36.39	-36.05	-36.46	-35.99
	Zr2CS	-41.52	-41.96	-41.49	-30.53
	Hf ₂ CS ₂	-43.68	-44.88	-44.36	-40.10

Table S1. The calculated total energies of the four possible configurations of M₂CS₂.

Table S2. The calculated total energies (in eV) of fully optimized $2 \times 2 \times 1$ supercells of the most stable configurations of Sc₂CS₂ and Y₂CS₂ with and without dipole correction in this study, as well

(14/10/06/4/2 2020) 12 (12/) 2220 2/10/ 00/11/01/06/11						
	Configuration	Total energy in this	Dipole-corrected	Dipole-corrected		
		study	total energy in	total energy by		
			this study	Zhang <i>et al</i> .		
Sc_2CS_2	type-B	-144.68	144.69	142.16		
	distorted type-B	-144.70				
Y ₂ CS ₂	type-B	-145.83	145.83	-143.99		
	distorted type-B	-145.84				

as the dipole-corrected total energies of the corresponding structures reported by Zhang *et al.* (*Nanoscale* 2020, 12 (41), 21291) for comparison.

Figure S2. Distorted type-B Sc₂CS₂ structure before and after optimization.

Figure S3. The top and side views of six possible configurations (**A-F**) of nonstoichiometric M₂CS (M=Ti, Zr, and Hf) created by *disorder* code based on the stable configuration of M₂CS₂ in **Figure S1 B**. The bright blue, yellow and brown balls indicate M, S and C atoms, respectively. **A:** All four S atoms on one side of the M₂CS supercell are removed, **B** and **C**: One S atom is removed from one side of the M₂CS supercell, while three S atoms are removed from the other side. It leaves the only S atom on one side close to the only S vacancy on the other side in configuration **B**, and far from the vacancy in configuration **C**. **D**, **E** and **F**: The four S atoms on both sides of the M₂CS supercell are uniformly removed. The remaining S atoms on both sides are arranged in stripes. The stripe-like sulfur terminations on one side are directly below those on the other side, otherwise it is configuration **F**. In configuration **E**, the strip-like sulfur groups on both sides appear to cross.

	А	В	С	D	E	F	
Ti ₂ CS	-131.11	-133.62	-133.48	-134.86	-134.3	-134.30	
Zr_2CS	-137.50	-139.73	-139.59	-140.58	-140.40	-140.27	

Table S3. The calculated total energies of the six possible configurations of nonstoichiometric M_2CS (M=Ti, Zr, and Hf).

Figure S4. The top and side views of nine possible configurations (**A-I**) of nonstoichiometric Sc₂CS and Y₂CS based on the stable configuration of Sc₂CS₂ and Y₂CS₂ in **Figure S1 C**. The bright blue, yellow and brown balls indicate M, S and C atoms, respectively. **A**: All the four S atoms on the side of the M₂CS supercell projected to the bottom M layer are removed, **B** and **C**: One S atom on the side of the M₂CS supercell projected to the middle C layer is removed, while three S atoms on the side of the M₂CS supercell projected to the bottom M layer are removed. It leaves the only S atom on one side close to the only S vacancy on the other side in configuration **B**, and far from the vacancy in configuration **C**. **D**, **E** and **F**: The four S atoms on both sides of the M₂CS supercell are uniformly removed. The remaining S atoms on both sides are arranged in stripes. The stripe-like sulfur terminations on both sides are parallel, and in configuration **F**, the distance between the two stripe-like S groups is the shortest in the xy plane, otherwise it is configuration **D**. In configuration **E**, the strip-like sulfur groups on both sides appear to cross. **G** and **H**: Three S atoms on the side of the M₂CS supercell projected to the middle C layer is removed. It leaves the only S atom on the side of the M₂CS supercell projected to the middle C layer is removed.

vacancy in configuration H. I: All the four S atoms on the side of the M_2CS supercell projected to the middle C layer are removed.

Table S4. The calculated total energies of the nine possible configurations of nonstoichiometric Y_2CS and Y_2CS .

	А	В	С	D	E	F	G	Н	I
Sc ₂ CS	-117.24	-119.88	-119.52	-120.75	-120.88	-121.32	-120.31	-118.72	-118.57
Y ₂ CS	-117.94	-120.05	-119.83	-120.55	-120.85	-121.28	-118.95	-118.97	-119.12

Figure S5. The most stable configuration of M_2CS (M=Sc, Y, Ti, Zr, and Hf) derived from M_2CS_2 configurations A, B, and C in **Figure S1**, respectively, with strip-like sulfur terminations on both sides.

Table S5. The calculated total energies of the most stable configurations of M_2CS (M=Sc, Y, Ti, Zr, and Hf) derived from M_2CS_2 configurations C, A, and B in **Figure S1**, respectively.

	А	В	С
Sc ₂ CS	-117.63	-121.42	-121.31
Ti ₂ CS	-132.86	-134.86	-128.41
Y2CS	-117.28	-121.30	-121.28
Zr ₂ CS	-139.44	-140.58	-133.48
Hf ₂ CS	-149.79	-151.13	-150.33

Figure S6. The calculated phonon dispersions of the M_2CS_x (M=Sc, Ti, Y, Zr, and Hf, x=1, 2).

Figure S7. The charge density differences of M_2CS_x (M=Sc, Y, Ti, Zr and Hf, x=1, 2).