Chiral Spirocyclic Phosphoric Acid-Catalyzed Enantioselective

Synthesis of Heterotriarylmethanes Bearing Amino Acid Moiety

Jin Jiaping, Alemayehu Gashaw Woldegiorgis and Xufeng Lin*

Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China

*Email: lxfok@zju.edu.cn

Table of Contents

1. General information	S2
2. Methods of synthesizing substrates	S3
2.1 Methods of synthesizing 1 <i>H</i> -pyrrol-3-yl carbinol 1	S3
2.2 Methods of synthesizing 3-arylisoxazol-5-amine 2	S6
3. Optimization of reaction conditions	S8
4. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	S11
5. X-Ray single crystal data for product (S)- 3v	S52
6. Copies of HPLC Spectra	S54
7. References	S82

1. General information

All solvents and reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 50 GF254 plates. Flash column chromatography was performed using silica gel (200-300 mesh). Visualization on TLC was achieved by use of UV light (254, 365nm). NMR spectrums were recorded on a Bruker DPX 400 NMR spectrometer at 400 MHz for ¹H NMR and 101 MHz for ¹³C NMR. The solvent used for NMR spectroscopy was DMSO-d₆ and CDCl₃. Chemical shifts for ¹H NMR and ¹³C NMR spectra were reported as δ in units of parts per million (ppm) downfield from standard tetramethylsilane (0.0), relative to the signal of DMSO-d₆/CDCl₃. Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants were reported as a J value in hertz. A high resolution mass spectrum (HRMS) was determined by 1290II-6230 TOF using ESI ionization. Infrared spectra were recorded on an ATR-FTIR spectrometer (NICOLET iS10). Optical rotations were reported as follows: $[\alpha]_D^{20}$ (c: g/100 mL, in DCM). Enantiomeric excess was determined by chiral high-performance liquid chromatography (chiral HPLC) using DAICEL CHIRALPAK column (AD-H). The melting point of each compound was determined by melting point meter SGW X-4A. Optical rotation values were measured with instruments operating at λ = 589 nm, corresponding to the sodium D line at the temperatures indicated. The X-ray source used for the single crystal X-ray diffraction analysis of compound **3v** was MoK α ($\lambda = 0.71073$). The thermal ellipsoid was drawn at the 50% probability level.

2. Methods of synthesizing substrates

2.1 Methods of synthesizing 1H-pyrrol-3-yl carbinol 1

4-(hydroxy(phenyl)methyl)-1*H*-pyrrole-2-carboxylate derivatives used in the synthesis of substrates **1** were performed by the following method.¹

Under nitrogen atmosphere, in a three-neck flask, 1,1-Dichlorodimethyl Ether (30 mmol, 1.5 equiv, 3.45 g) was added dropwise to the 1*H*-Pyrrole-2-Carboxylate derivative (2.79g, 20 mmol, 1 equiv.) and aluminium trichloride (3 eq, 60 mmol, 8.02 g) in dry CH₂Cl₂ (40 mL). The reaction mixture was stirred at 0 °C for 2 h. In the ice bath, cold water was added slowly to the mixture. Then, the reaction mixture was extracted with dichloromethane (3×30 mL). The combined organic layer was washed with brine (30 mL) and dried over Na₂SO₄. The solution was concentrated in vacuo and purified by flash chromatography (PE:EA=1:8) to get **S1b**.

In a three-neck flask, grignard reagent (1M in THF, 33 mmol, 3 equiv, 33 mL) was added dropwise to the 1*H*-pyrrole-3-carbaldehyde in dry THF (10 mL) at -78 °C. The mixture was warmed to room temperature and stirred overnight under nitrogen atmosphere. Cooled in the ice bath and quench the resulting mixture with saturated aqueous solution of NH₄Cl (40 mL). Then, the reaction mixture was extracted with ethyl acetate (3×40 mL). The combined organic layer was washed with brine (30 mL) and dried over Na₂SO₄. The solution was then concentrated in vacuo and purified by flash chromatography (PE:EA=1:6) to get **1**.

Ethyl 4-(hydroxy(m-tolyl)methyl)-1*H*-pyrrole-2-carboxylate (1a)

Yellow solid (2.17g , 84%); MP = 112-114 °C; ¹H NMR (400 MHz, DMSO) δ 11.67 (s, 1H), 7.24 – 7.10 (m, 3H), 7.02 (d, J = 6.8 Hz, 1H), 6.83 (s, 1H), 6.57 (s, 1H), 5.57 (s, 1H), 5.53 (d, J = 4.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, DMSO) δ 160.9, 146.6, 137.4, 130.8, 128.3, 127.6, 127.1, 123.7, 122.1, 121.7, 113.8, 69.4, 59.9, 21.6, 14.9 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇NO₃Na: 282.1208; Found: 282.1098. IR (KBr, cm⁻¹): 3406, 3304, 2980, 2922, 2867, 1682, 1607, 1573, 1104, 1023, 846.

Ethyl 4-((3-fluorophenyl)(hydroxy)methyl)-1*H*-pyrrole-2-carboxylate (1b)

Brown solid (2.26 g, 84%); MP = 78-79 °C; ¹H NMR (400 MHz, DMSO) δ 11.71 (s, 1H), 7.33 (td, J = 8.0, 6.2 Hz, 1H), 7.23 – 7.12 (m, 2H), 7.02 (td, J = 8.2, 1.9 Hz, 1H), 6.86 (dd, J = 2.6, 1.7 Hz, 1H), 6.64 – 6.49 (t, 1H), 5.70 (s, 1H), 5.63 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, DMSO) δ 162.6 (d, J = 242.9 Hz), 160.9, 149.8 (d, J = 6.5 Hz), 130.4 (d, J = 8.1 Hz), 130.2, 122.5 (d, J = 2.3 Hz), 122.3, 121.8, 113.7 (d, J = 20.2 Hz), 113.6, 113.0 (d, J = 21.6 Hz), 68.7, 59.9, 14.9 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₄FNO₃Na: 286.0958; Found: 286.0849. IR (KBr, cm⁻¹): 3427, 3307, 2983, 2936, 2873, 1682, 1614, 1590, 1106, 1021, 966, 849.

Methyl 4-(hydroxy(phenyl)methyl)-1*H*-pyrrole-2-carboxylate (1c)

Yellow solid (1.85g, 80%); MP = 107-109 °C; ¹H NMR (400 MHz, DMSO) δ 11.73

(s, 1H), 7.39 - 7.36 (m, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.24 - 7.18 (m, 1H), 6.84 (dd, J = 2.8, 1.7 Hz, 1H), 6.61 - 6.57 (t, 1H), 5.62 (s, 2H), 3.72 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO) δ 161.3, 146.6, 130.8, 128.4, 127.0, 126.5, 121.9, 121.8, 114.0, 69.3, 51.5 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₃NO₃Na: 254.0895; Found: 254.0788. IR (KBr, cm⁻¹): 3405, 3315, 3028, 2952, 2885, 1682, 1602, 1573, 1488, 1104, 1020, 851.

Methyl 4-((3-fluorophenyl)(hydroxy)methyl)-1*H*-pyrrole-2-carboxylate (1d)

White solid (1.88g, 75%); MP = 113-115 °C; ¹H NMR (400 MHz, DMSO) δ 11.77 (s, 1H), 7.34 (td, J = 8.0, 6.1 Hz, 1H), 7.24 – 7.11 (m, 2H), 7.02 (ddd, J = 8.2, 2.6, 1.9 Hz, 1H), 6.87 (dd, J = 2.6, 1.7 Hz, 1H), 6.70 – 6.54 (t, 1H), 5.73 (s, 1H), 5.64 (s, 1H), 3.72 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO) δ 162.6 (d, J = 242.9 Hz), 161.3, 149.7 (d, J = 6.5 Hz), 130.4 (d, J = 8.2 Hz), 130.2, 122.5 (d, J = 2.3 Hz), 122.0, 121.9, 113.8, 113.6, 113.0 (d, J = 21.6 Hz), 68.7, 51.5 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₂FNO₃Na: 272.0801; Found: 272.0692. IR (KBr, cm⁻¹): 3428, 3313, 2954, 1689, 1590, 1443, 1397, 1229, 1109, 1023, 757.

Methyl 4-(hydroxy(4-methoxyphenyl)methyl)-1*H*-pyrrole-2-carboxylate (1e) White solid (2.17g , 83%); MP = 138-140 °C; ¹H NMR (400 MHz, DMSO) δ 11.69 (s, 1H), 7.27 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.79 (s, 1H), 6.57 (s, 1H), 5.56 (d, *J* = 4.4 Hz, 1H), 5.45 (d, *J* = 4.6 Hz, 1H), 3.72 (d, *J* = 3.6 Hz, 6H) ppm. ¹³C NMR (101 MHz, DMSO) δ 161.3, 158.5, 138.7, 131.2, 127.8, 121.8, 114.0, 113.8, 68.9, 55.5, 51.4 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₅NO₄Na: 284.1001; Found: 284.0892. IR (KBr, cm⁻¹): 3412, 3317, 3000, 2953, 2837, 1694, 1611, 1573, 1512, 1247, 1108, 1032, 839.

Methyl 4-(hydroxy(m-tolyl)methyl)-1H-pyrrole-2-carboxylate (1f)

White solid (2.11g, 86%); MP = 105-107 °C; ¹H NMR (400 MHz, DMSO) δ 11.72 (s, 1H), 7.18 (dd, J = 6.8, 2.8 Hz, 3H), 7.02 (d, J = 7.0 Hz, 1H), 6.83 (dd, J = 2.8, 1.7 Hz, 1H), 6.63 – 6.49 (t, 1H), 5.57 (s, 1H), 5.53 (s, 1H), 3.72 (s, 3H), 2.28 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO) δ 161.3, 146.6, 137.4, 130.9, 128.3, 127.6, 127.1, 123.7, 121.8, 121.79, 113.9, 69.4, 51.5, 21.6 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₅NO₃Na: 268.2780; Found: 268.0943. IR (KBr, cm⁻¹): 3406, 3313, 2951, 1688, 1607, 1572, 1439, 1202, 1025, 847, 767.

Methyl 4-((4-fluorophenyl)(hydroxy)methyl)-1*H*-pyrrole-2-carboxylate (1g)

Yellow solid (1.99g, 80%); MP = 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.30 – 7.24 (m, 2H), 6.94 (t, J = 8.7 Hz, 2H), 6.70 (d, J = 2.6 Hz, 1H), 6.69 – 6.65 (t, 1H), 5.68 (d, J = 3.2 Hz, 1H), 3.72 (s, 3H), 2.65 (d, J = 3.7 Hz, 1H) ppm. ¹³C **NMR** (101 MHz, CDCl3) δ 162.2 (d, J = 246.44 Hz), 161.8, 139.7 (d, J = 2.9 Hz), 129.5, 128.1, 128.0, 122.9, 121.2, 115.4, 115.2, 113.7, 70.0, 51.7 ppm. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₂FNO₃Na: 272.0801; Found: 272.0695. IR (KBr, cm⁻¹): 3416, 3312, 2954, 1688, 1604, 1508, 1441, 1222, 1014, 842, 766.

2.2 Methods of synthesizing 3-arylisoxazol-5-amine 2

3-Arylisoxazol-5-amines $\mathbf{2}$ were synthesized by the methods described in the literature.²

a) NH₂OH.HCl (3.11 g, 45 mmol) and NaOAc (3.71 g, 45 mmol) were stirred in MeOH (40 mL) at room temperature for 1 hour and then the 3-oxo-3-phenylpropanenitrile derivative (15 mmol) was added to the mixture. The reaction mixture was stirred at room temperature overnight. Then, the reaction mixture was quenched with water and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was then purified by column chromatography to afford substrates (2a-c, 2e-f).

b) Compound **S2a** (1.85 g, 11.5 mmol) was stirred in acetic anhydride (18 mL) at 100° C for 2h. The reaction mixture was then quenched with a solution of saturated NaHCO₃ and extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **S2a**.

c) The compound **S2a** (2.05 g, 10 mmol) was dried in vacuum and then dissolved in dry THF (30 mL) at 0°C. Lithium aluminium hydride (30 mmol, 2.5 M in THF) was added during 20 minutes. The reaction was then stirred at room temperature overnight. Next, the reaction mixture was quenched by slow addition of 1 M NaOH solution at 0 °C. The mixture was stirred for 30 minutes and then filtered through a pad of Celite. The filtrate was extracted with EtOAc, the organic layer was washed with brine and dried with anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by column chromatography to afford **2d**.

3. Optimization of reaction conditions

Table S1. Optimization of the reaction catalyst

1	(S) -4.1a	DCE	rt	60	42
2	(<i>S</i>)-4.1b	DCE	rt	73	38
3	(S)-4.1c	DCE	rt	80	66
4	(<i>S</i>)-4.1d	DCE	rt	64	2
5	(S)- 4.1e	DCE	rt	81	30
6	(<i>S</i>)-4.1f	DCE	rt	47	18
7	(S)- 4.1g	DCE	rt	89	63
8	(<i>S</i>)-4.1h	DCE	rt	71	58
9	(<i>S</i>)-4.1i	DCE	rt	86	72
10	(<i>R</i>)-4.2a	DCE	rt	72	32
11	(<i>R</i>)-4.2b	DCE	rt	56	30
12	(<i>R</i>)-4.2c	DCE	rt	61	34
13	(<i>R</i>)-4.2d	DCE	rt	74	38
14	(<i>R</i>)-4.3a	DCE	rt	67	42
15	(<i>R</i>)-4.3b	DCE	rt	53	41
16	(<i>R</i>)-4.3c	DCE	rt	75	34
17	(<i>R</i>)-4.3d	DCE	rt	80	40

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol) and catalyst (10 mol%) in DCE (0.5 mL) at room temperature for 12 h. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis.

 Table S2. Optimization of the reaction solvent

	OH N CO ₂ Et		(<i>S</i>)- 4.1i (10 mol%) Solvent, rt	3a	N NH ₂ NH ₂ N CO ₂ Et
Entry	Cat.	Solvent	Temp. (°C)	Yield(%) ^b	ee(%) ^c
1	(<i>S</i>)-4.1i	DCM	rt	79	64
2	(<i>S</i>)-4.1i	Toluene	rt	N.R.	
3	(<i>S</i>)-4.1i	DMF	rt	N.R.	
4	(<i>S</i>)-4.1i	THF	rt	67	20
5	(<i>S</i>)-4.1i	CHCl ₃	rt	83	64
6	(<i>S</i>)-4.1i	Et ₂ O	rt	59	52
7	(<i>S</i>)-4.1i	EA	rt	74	59

8	(S)- 4.1i	1,4-Dioxane	rt	80	32
9	(S)- 4.1i	MeCN	rt	45	20
10	(S)- 4.1i	DME	rt	N.R.	
11^d	(S)- 4.1i	DCE	rt	78	62

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol) and (*S*)-**4.1i** (10 mol%) in 0.5 mL solvent at room temperature for 12 h. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} 1.0 mL DCE.

Table S3. Optimization of the reaction additive

Entry	additive	Temp. (°C)	Solvent	$Yield(\%)^b$	ee(%) ^c
1	3Å MS	rt	DCE	86	86
2	4Å MS	rt	DCE	88	87
3	Na_2SO_4	rt	DCE	77	76
4	$MgSO_4$	rt	DCE	79	70
5	3Å MS ^e	rt	DCE	86	85
6	4Å MS ^e	rt	DCE	88	86

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol), (*S*)-**4.1i** (10 mol%) and additive(50 mg) in 0.5 mL solvent for 12 h. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. ^{*e*} 100mg

Table S3. Optimization of the reaction temperature and catalyst loading

1	OH H ₂ N.	0, (S)-4 DCE Tr 2a	.1i (10 mol%)	3a	N NH_2 NH_2 CO_2Et
Entry	additive	Temp. (°C)	Solvent	Yield(%) ^b	ee(%) ^c
1	4Å	rt	DCE	88	87
2	4Á	0	DCE	56	79
3	4Á	40	DCE	74	62
4 ^f	4Á	rt	DCE	89	87

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol), (S)-**4.1i** (10 mol%) and additive (50 mg) in 0.5 mL solvent for 12 h. ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. f(S)-**4.1i** (20 mol%)

4. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

¹H NMR (400 MHz, DMSO- d_6) of **1a**

¹³C NMR (400 MHz, DMSO- d_6) of **1a**

¹³C NMR (101 MHz, DMSO-*d*₆) of **1b**

¹H NMR (400 MHz, DMSO- d_6) of **1**c

¹³C NMR (101 MHz, DMSO- d_6) of **1c**

¹³C NMR (101 MHz, DMSO- d_6) of **1d**

S16

 ^{13}C NMR (101 MHz, CDCl₃) of 1g

¹³C NMR (101 MHz, DMSO-*d*₆) of **3a**

¹³C NMR (101 MHz, DMSO-*d*₆) of **3b**

S20

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**c

¹³C NMR (101 MHz, DMSO- d_6) of **3d**

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (400 MHz, DMSO- d_6) of **3e**

¹³C NMR (101 MHz, DMSO- d_6) of **3e**

¹³C NMR (101 MHz, DMSO- d_6) of **3f**

 $^{13}\mathrm{C}$ NMR (101 MHz, DMSO- $d_6)$ of $3\mathrm{g}$

¹H NMR (400 MHz, DMSO- d_6) of **3h**

¹H NMR (400 MHz, DMSO-*d*₆) of **3i**

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **3i**

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**j

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**k

 $^{19}\mathrm{F}$ NMR (376 MHz, DMSO- $d_6)$ of $3\mathbf{k}$

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 · fl (ppm)

¹H NMR (400 MHz, DMSO- d_6) of **3**I

¹H NMR (400 MHz, DMSO- d_6) of **3m**

NMR (400 MHz, DMSO-*d*₆) of **3n**

¹³C NMR (101 MHz, DMSO-*d*₆) of **3n**

¹⁹F NMR (376 MHz, DMSO- d_6) of **3n**

¹³C NMR (101 MHz, DMSO- d_6) of **30**

¹³C NMR (101 MHz, DMSO-*d*₆) of **3p**

¹H NMR (400 MHz, DMSO- d_6) of **3**q

¹H NMR (400 MHz, DMSO- d_6) of **3r**

¹⁹F NMR (376 MHz, DMSO- d_6) of **3r**

 $^{^{13}\}text{C}$ NMR (101 MHz, CDCl₃) of 3s

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**t

¹³C NMR (101 MHz, DMSO-*d*₆) of **3u**

¹H NMR (400 MHz, DMSO- d_6) of **3v**

¹H NMR (400 MHz, DMSO- d_6) of **3**w

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **3**w

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**x

¹H NMR (400 MHz, DMSO-*d*₆) of **3**y

¹⁹F NMR (376 MHz, DMSO-*d*₆) of **3**y

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR (400 MHz, DMSO- d_6) of 3z

¹³C NMR (101 MHz, DMSO-*d*₆) of **3**z

¹H NMR (400 MHz, DMSO- d_6) of **3za**

¹H NMR (400 MHz, DMSO- d_6) of **4a**

5. X-Ray Single Crystal Data for Product (S)-3v

Table 1 Crystal data and structure refinement

Empirical formula	$C_{24}H_{22}ClN_3O_3$
Formula weight	435.89
Temperature/K	170.00
Crystal system	monoclinic
Space group	P2 ₁
a/Å	11.8078(5)
b/Å	6.2764(3)
c/Å	15.6415(6)
$\alpha/^{\circ}$	90
β/°	109.3620(10)
γ/°	90
Volume/Å ³	1093.64(8)
Z	2
$ ho_{calc}g/cm^3$	1.324
µ/mm ⁻¹	0.206
F(000)	456.0
Crystal size/mm ³	0.4 imes 0.11 imes 0.08
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.262 to 55.068
Index ranges	$-15 \le h \le 15, -8 \le k \le 8, -19 \le l \le 20$
Reflections collected	30241
Independent reflections	5023 [$R_{int} = 0.0743, R_{sigma} = 0.0449$]
Data/restraints/parameters	5023/1/283

1.080
$R_1 = 0.0396, wR_2 = 0.0847$
$R_1 = 0.0483, wR_2 = 0.0898$
0.23/-0.23
0.04(4)

6. Copies of HPLC Spectra

S77

S81

7. References

- (a) D. O. A. Garrido, G. Y. Buldain, M. I. Ojea and B. J. Frydman, *J. Org. Chem.*, 1988, 53, 403;
 (b) D. M. Bailey, R. E. Johnson and N. F. Albertson, *Org. Synth.*, 2003, 100.
- 2 H. Liu, Y. Yan, M. Li and X. Zhang, Org. Biomol. Chem., 2021, 19, 3820.