Supporting Information

Site-Specific Radiolabeling Using Mushroom Tyrosinase and the Strain-Promoted Oxidation-Controlled 1,2-Quinone Cycloaddition

Cindy Rodriguez^{a,b,c}, Samantha Delaney ^{b,c,d}, Joni Sebastiano^{b,c,d}, Samantha M. Sarrett^{b,c,d}, Mike A. Cornejo^{a,b,c}, Sarah Thau^b, Meena M. Hosny^b, and Brian M. Zeglis^{a,b,c,d,e}

^aPh.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York 10016, United States

^bDepartment of Chemistry, Hunter College, City University of New York, New York, New York, 10065 United States ^cDepartment of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10021 United States ^dPh.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York 10016 United States

^eDepartment of Radiology, Weill Cornell Medical College, New York, New York 10021 United States

Corresponding Author: Brian M. Zeglis; 413 East 69th Street, New York, NY, 10021; Phone: 212-896-0433; E-mail: <u>bz102@hunter.cuny.edu</u>

- **Running Title:** Site-Specific Radiolabeling Using Mushroom Tyrosinase and the Strain-Promoted Oxidation-Controlled 1,2-Quinone Cycloaddition
- **Keywords:** Site-specific bioconjugation; site-selective bioconjugation; biorthogonal chemistry; click chemistry; immunoPET

SUPPLEMENTAL FIGURES

Figure S1. Protein-stained SDS-PAGE of huA33 exposed to PNGaseF for various amounts of time. The dotted line denotes the mass of the heavy chain of the parental IgG.

Figure S2. Protein-stained and fluorescent SDS-PAGE of pertuzumab modified under various conditions.

Figure S3. Protein-stained and fluorescent SDS-PAGE of trastuzumab modified under various conditions.

Figure S4. ESI-MS of purified DFO-TCO.

Figure S5. Representative radio-iTLC chromatograms. The radiolabeling of [⁸⁹Zr]Zr-DFO-huA33 and [⁸⁹Zr]Zr-DFO-^{SPOCQ}huA33 was followed via radio-iTLC using EDTA (50 mM, pH 5.0) as the eluent. Both constructs typically displayed >98% radiochemical purity both before and after purification via gel filtration. The peak at ~75 mm corresponds to the radiolabeled antibody; any free [⁸⁹Zr]Zr-EDTA would be seen at ~150 mm. All radiolabeling studies and iTLC scans were performed in triplicate.

Figure S6. SDS-PAGE analysis of [⁸⁹Zr]Zr-DFO-huA33 and [⁸⁹Zr]Zr-DFO-^{SPOCQ}**huA33.** Protein-stained reducing SDS-PAGE of the radioimmunoconjugates as well as autoradiography of the stained gel.

Figure S7. Radio-size-exclusion HPLC for human serum stability study. Following the radiosynthesis of [89 Zr]Zr-DFO-huA33 and [89 Zr]Zr-DFO- $^{\text{SPOCQ}}$ huA33, the radioimmunoconjugates were incubated in 0.5 mL human serum and placed on a thermomixer at 37 °C, 400 rpm (n = 3). At 0 and 72 h after the start of the study, an aliquot of each radioimmunoconjugate was injected into a size-exclusion HPLC with a radioactivity detector. The peak seen at ~15 minutes is the radiolabeled antibody. Any free [89 Zr]Zr⁴⁺ would be seen as a peak at >20 minutes.

Figure S8. Human serum stability study. Following the radiosynthesis of [⁸⁹Zr]Zr-DFO-huA33 and [⁸⁹Zr]Zr-DFO-^{SPOCQ}huA33, the radioimmunoconjugates were incubated in 0.5 mL human serum and placed on a thermomixer at 37 °C, 400 rpm. At 0, 24, 48, 72, 96, and 120 h after the start of the study, each radioimmunoconjugate was assayed via radio-iTLC with EDTA (50 mM, pH 5.0) as an eluent. The % radioactivity associated with the antibody at each timepoint was plotted using GraphPad Prism 8.0 (n = 3). This data corresponds with the data shown in Table S8.

SUPPLEMENTAL TABLES

	Cy5- ^{SPOCQ} huA33	Cy5- ^{SPOCQ} huA33		
	(One-Pot Trial)	(High Equivalents)		
DOL (Cy5/mAb)	0.2 ± 0.02	1.1 ± 0.1		

Table S1. Degree of labeling results of the three-reagent-one-pot approach and the stepwise strategy using a 4 h incubation and quadruple the normal number of equivalents of mTyr and Cy5-TCO.

	Cy5- ^{SPOCQ} trastuzumab	Cy5- ^{SPOCQ} pertuzumab		
DOL (Cy5/mAb)	1.6 ± 0.2	1.7 ± 0.2		

Table S2. Degree of labeling results for trastuzumab and pertuzumab site-specifically modified with Cy5 using the mTyr- and the SPOCQ cycloaddition-based strategy.

	DFO-huA33	DFO- ^{spocq} huA33		
DOL (DFO/mAb)	1.7 ± 0.1	1.6 ± 0.1		

Table S3. Degree of labeling results for huA33 (a) randomly modified with DFO via the stochastic modification of lysines and (b) site-specifically modified with DFO using our approach based on mTyr and the SPOCQ cycloaddition.

Organs	[⁸⁹ Zr]Zr-DFO-huA33	[⁸⁹ Zr]Zr-DFO- ^{SPOCQ} huA33		
Blood	2.1 ± 1.6	3.0 ± 0.8		
Tumor	70.0 ± 33.8	109.8 ± 17.6		
Heart	2.0 ± 0.5	1.5 ± 0.2		
Lungs	1.4 ± 0.8	1.7 ± 0.2		
Liver	4.0 ± 1.4	2.7 ± 0.8		
Spleen	2.0 ± 0.8	2.5 ± 1.1		
Pancreas	0.7 ± 0.3	0.6 ± 0.2		
Stomach	0.6 ± 0.2	0.5 ± 0.2		
S. Intestine	1.2 ± 0.4	0.6 ± 0.1		
L. Intestine	0.9 ± 0.0	0.5 ± 0.1		
Kidneys	1.7 ± 0.8	4.9 ± 0.5		
Ovaries	1.4 ± 0.6	1.2 ± 1.1		
Muscle	0.4 ± 0.3	0.5 ± 0.2		
Bone	4.6 ± 0.5	7.0 ± 5.3		
Skin	2.1 ± 0.9	1.8 ± 1.2		
Tail	3.1 ± 2.3	1.5 ± 0.1		

Table S4. Biodistribution data from mice bearing SW1222 xenografts. Biodistribution data collected 120 h after the intravenous administration of [89 Z]Zr-DFO-huA33 or [89 Zr]Zr-DFO- SPOCQ huA33 [3.7 -4.0 MBq (100-110 µCi), 20-22 µg, in 100 µL of PBS] to athymic nude mice bearing A33-expressing SW1222 colorectal carcinoma xenografts (n = 4). Values are in units of $^{\%}$ ID/g and are expressed as mean ± standard deviation.

Organs	[⁸⁹ Zr]Zr-DFO-huA33	[⁸⁹ Zr]Zr-DFO- ^{SPOCQ} huA33		
Blood	0.3 ± 0.1	5.7 ± 0.4		
Tumor	33.1 ± 10.6	76.2 ± 13.0		
Heart	1.8 ± 0.6	1.1 ± 0.6		
Lungs	1.6 ± 0.2	3.3 ± 1.8		
Liver	16.2 ± 0.6	5.9 ± 2.1		
Spleen	42.1 ± 8.6	9.7 ± 4.0		
Pancreas	1.1 ± 0.8	0.9 ± 0.6		
Stomach	1.1 ± 0.4	1.2 ± 0.1		
S. Intestine	5.1 ± 0.4	1.7 ± 0.2		
L. Intestine	1.2 ± 0.6	2.9 ± 3.7		
Kidneys	1.4 ± 0.3	6.2 ± 5.7		
Ovaries	3.1 ± 1.4	1.0 ± 0.2		
Muscle	0.3 ± 0.1	0.3 ± 0.1		
Bone	8.2 ± 5.1	6.6 ± 0.5		
Skin	2.2 ± 0.2	3.8 ± 0.4		
Tail	2.7 ± 1.3	2.0 ± 0.2		

Table S5. Biodistribution data from mice bearing SW1222 xenografts. Biodistribution data collected 120 h after the intravenous administration of [⁸⁹Z]Zr-DFO-huA33 or [⁸⁹Zr]Zr-DFO- $^{SPOCQ}huA33$ [3.7 -4.0 MBq (100-110 µCi), 20-22 µg, in 100 µL of PBS] to NSG mice bearing A33-expressing SW1222 colorectal carcinoma xenografts (n = 4). Values are in units of %ID/g and are expressed as mean ± standard deviation.

	Absorbance @ 450 nm					
Immunoconjugate Concentration (µg/ml)	huA33	^{degly} huA33	DFO-huA33	DFO- ^{spocq} huA33		
1000	0.44 ± 0.03	0.45 ± 0.01	0.41 ± 0.02	0.43 ± 0.004		
333.3	0.41 ± 0.02	0.44 ± 0.01	0.38 ± 0.02	0.41 ± 0.01		
111.1	0.38 ± 0.31	0.41 ± 0.002	0.34 ± 0.02	0.38 ± 0.01		
37.03	0.31 ± 0.01	0.35 ± 0.01	0.26 ± 0.02	0.33 ± 0.003		
12.34	0.2 ± 0.01	0.25 ± 0.01	0.17 ± 0.002	0.25 ± 0.004		
4.115	0.12 ± 0.01	0.16 ± 0.02	0.10 ± 0.001	0.18 ± 0.01		
1.371	0.07 ± 0.002	0.11 ± 0.01	0.07 ± 0.003	0.15 ± 0.03		
0.475	$0.\overline{06\pm0.002}$	0.10 ± 0.02	0.06 ± 0.01	0.14 ± 0.01		

Table S6. ELISA results for A33 binding. A33-coated plates were incubated with varying concentrations of huA33, degly huA33, DFO-huA33, or DFO- SPOCQ huA33 (n = 3). After a 2 h incubation, HRP-labeled goat anti-human secondary antibody was incubated in each well for 1 h followed by TMB for 10 minutes. The absorbance of each well was detected on a microplate reader, and the results were analyzed using GraphPad Prism 8.0 software. This data corresponds with the data shown in Figure 2.

	Absorbance @ 450 nm					
Immunoconjugate Concentration (µg/ml)	huA33	^{degly} huA33	DFO-huA33	DFO- ^{spocq} huA33		
1000	0.49 ± 0.01	0.14 ± 0.01	0.46 ± 0.01	0.18 ± 0.01		
333.3	0.44 ± 0.01	0.10 ± 0.002	0.41 ± 0.01	0.11 ± 0.002		
111.1	0.38 ± 0.01	0.07 ± 0.00	0.35 ± 0.01	0.07 ± 0.001		
37.03	0.28 ± 0.01	0.05 ± 0.003	0.24 ± 0.01	0.06 ± 0.002		
12.34	0.16 ± 0.002	0.04 ± 0.001	0.13 ± 0.004	0.05 ± 0.001		
4.115	0.09 ± 0.002	0.04 ± 0.00	0.08 ± 0.003	0.05 ± 0.003		
1.371	0.06 ± 0.001	0.04 ± 0.001	0.06 ± 0.004	0.05 ± 0.01		
0.475	$0.\overline{07\pm0.003}$	$0.\overline{04\pm0.001}$	$0.\overline{05\pm0.001}$	0.04 ± 0.001		

Table S7. ELISA results for hFcyRI binding. hFcyRI- coated plates were incubated with varying concentrations of huA33, degly huA33, DFO-huA33, or DFO- SPOCQ huA33 (n = 3). After a 2 h incubation, HRP-labeled goat anti-human secondary antibody was incubated in each well for 1 h followed by TMB for 10 minutes. The absorbance of each well was detected on a microplate reader, and the results were analyzed using GraphPad Prism 8.0 software. This data corresponds with the data shown in Figure 2.

	%ROI of radio-iTLC					
Constructs	0 h	24 h	48 h	72 h	96 h	120 h
[⁸⁹ Zr]Zr-DFO-huA33	98.8 ± 0.3	99.4 ± 0.2	99.4 ± 0.2	99.1 ± 0.2	98.9 ± 0.1	99.0 ± 0.2
[⁸⁹ Zr]Zr-DFO- ^{SPOCQ} huA33	98.8 ± 0.2	99.4 ± 0.1	98.7 ± 0.3	99.0 ± 0.0	97.7 ± 0.3	97.4 ± 0.6

Table S8. Human serum stability study results. Following the radiosynthesis of [⁸⁹Zr]Zr-DFO-huA33 and [⁸⁹Zr]Zr-DFO-^{SPOCQ}huA33, the radioimmunoconjugates were incubated in 0.5 mL human serum and placed on a thermomixer at 37 °C, 400 rpm. At 0, 24, 48, 72, 96, and 120 h after the start of the study, each radioimmunoconjugate was assayed via radio-iTLC using EDTA (50 mM, pH 5.0) as the eluent (n = 3). This data corresponds with the data shown in Figure S8.