## **Supporting Information** Anchoring Ultrasmall Pd Nanoparticles by Bipyridine Functional Covalent Organic Frameworks for Semihydrogenation of Acetylene

Ji-qiu Zhang<sup>1</sup>, Yu-Hao Wang<sup>1</sup>, Shu-jing Zhang<sup>1</sup>, Yang-qian Lin<sup>1</sup>, Qing-qing Guan<sup>2</sup>, Xi-meng Xu<sup>1\*</sup> <sup>1</sup>Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, PR China.

<sup>2</sup>School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang 830046, PR China.

| Serial number | Solvent type and amount | Other synthesis conditions                                                       |
|---------------|-------------------------|----------------------------------------------------------------------------------|
| 1             | Dioxane, 2 ml           | 0.2 mmol of 1,3,5-tribenzaldehyde; 0.3                                           |
| 2             | N-butanol, 2 ml         | mmol of 5,5-diamino-2,2-bipyridine; 0.4                                          |
| 3             | Mesitylene, 2 ml        | ml of acetic acid aqueous solution (3<br>mol/L): temperature of 120°C: synthesis |
| 4             | Ethanol, 2 ml           | time It takes 72 h.                                                              |

Table S1 Experimental conditions for the synthesis of TbBpy in different solvents.



Figure S1. XRD patterns of TbBpy synthesized in 4 different solvents.

Table S2 Experimental conditions for the synthesis of TbBpy in ethanol/mesitylene with different volume ratio.

| Serial | Solvent ratio and dosage | Other synthesis conditions |  |  |
|--------|--------------------------|----------------------------|--|--|
| number |                          | Other synthesis conditions |  |  |

| 1 | Ethanol/Mesitylene=4:1,2 ml | 0.2 mmol of 1,3,5-tribenzaldehyde; 0.3   |  |  |
|---|-----------------------------|------------------------------------------|--|--|
|   |                             | mmol of 5,5-diamino-2,2-bipyridine; 0.4  |  |  |
| 2 | Ethanol/Mesitylene=1:1,2 ml | ml of acetic acid aqueous solution (3    |  |  |
| 3 | Ethanol/Mesitylene=1:4,2 ml | mol/L); temperature of 120 °C; synthesis |  |  |
|   |                             | time for 72 h.                           |  |  |



Figure S2. XRD patterns of TbBpy synthesized in ethanol/mesitylene with different volume ratios.

Table S3 Experimental conditions for synthesizing TbBpy with different concentrations of acetic acid aqueous

| 1   |        |  |
|-----|--------|--|
| SO  | 11f10n |  |
| 301 | uuon.  |  |
|     |        |  |

| Serial<br>number | Concentration and dosage<br>of acetic acid aqueous<br>solution | Other synthesis conditions                                                 |
|------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|
| 1                | 6 mol/L, 0.4 ml                                                | 0.2 mmol of 1,3,5-tribenzaldehyde; 0.3mmol                                 |
| 2                | 9 mol/L, 0.4 ml                                                | ethanol/mesitylene mixed solvent with a                                    |
| 3                | 12 mol/L, 0.4 ml                                               | volume ratio of 1:4; temperature is 120 °C;<br>The synthesis time is 72 h. |



Figure S3. XRD patterns of TbBpy synthesized from 1: 4 volume ratio of ethanol/mesitylene mixed solvents with different concentrations of acetic acid solution.



Figure S4. Infrared spectra of TbBpy, 1,3,5-triphenylaldehyde and 5,5-diamino-2,2-bipyridine.



Figure S5. TGA curves of TbBpy (black) and Pd@TbBpy (red).



Figure S6. Catalytic activity of different reduction reactions: acetylene conversion (red) and ethylene selectivity (green) of (a) 1wt%Pd@TbBpy-NaBH<sub>4</sub> and (b) 1wt%Pd@TbBpy-H<sub>2</sub> at 40000 h<sup>-1</sup>.



**Figure S7.** After catalytic testing: (a) HR-TEM images Pd@TbBpy and (b) the Pd particle size frequency distribution histogram.



Figure S8. Catalytic activity of 0.75wt%Pd@TbBpy (red) and Pd salt (black).



Figure S9. In situ DRIFTS spectra over a 0.75wt% Pd@TbBpy at 120°C: (a) The real-time in situ DRIFTS spectra of  $C_2H_2$  adsorption. (b) The adsorption and desorption spectra of  $C_2H_2$ . (c) The absorption and desorption spectra of  $C_2H_2$  hydrogenation.



Figure S10. H<sub>2</sub>-TPD profiles of Pd@TbBpy catalyst.

Table S4. Conversion and Selectivity of acetylene hydrogenation for Pd-based catalyst.

| Catalyst                          | Pd loading, %<br>/Size,nm | Tempure,<br>°C | WHSV<br>h <sup>-1</sup> | Conversion,<br>% | Selectivity,<br>% | Reference                   |
|-----------------------------------|---------------------------|----------------|-------------------------|------------------|-------------------|-----------------------------|
| Pd@TbBpy                          | 0.75                      | 120            | 70000                   | 100              | 88.2              | This work                   |
| Pd <sub>1</sub> /ND@G             | 0.11                      | 180            | 60000                   | 100              | 90                | Huang et.al <sup>1</sup>    |
| Pd <sub>1</sub> /CeO <sub>2</sub> | 1                         | 160            | 90000                   | 100              | 85%               | Guo et.al <sup>2</sup>      |
| Pd/MCN                            | 0.1                       | 120            | 33000                   | ~90              | 84.3              | Dodangeh et.al <sup>3</sup> |
| Pd1/MgO-H100                      | 0.16                      | 140            | 90000                   | 100              | 70                | Guo et.al <sup>4</sup>      |
| Pd/CTS                            | 1                         | 90             | 90000                   | 100              | ~90               | Guan et.al <sup>5</sup>     |

| Pd/SiC                                         | 0.80  | 100  | 30000 | 100 | 80 | Guo et.al <sup>6</sup>   |
|------------------------------------------------|-------|------|-------|-----|----|--------------------------|
| Pd <sub>1</sub> /C <sub>3</sub> N <sub>4</sub> | 3.5   | ~110 | 60000 | 99  | 83 | Huang et.al <sup>7</sup> |
| Pd@NMC-850                                     | 0.208 | 100  | 12000 | 66  | 83 | Wang et.al <sup>8</sup>  |
| Pd/a-<br>Al <sub>2</sub> O <sub>3</sub> @SiC   | 0.035 | 130  | 10000 | 83  | 65 | Zhang et.al <sup>9</sup> |

## References

1. Huang F , Deng Y , Chen Y , et al. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene[J]. Journal of the American Chemical Society, 2018, 140(41):13142-13146.

2. Guo Y , Li Y , Du X , et al. Pd single-atom catalysts derived from strong metal–support interaction for selective hydrogenation of acetylene[J]. Nano Research, 2022, 15:10037–10043.

3. Dodangeh F, Rashidi A, Aghaie H, et al. Synthesis of Novel Ag-modified Pd-supported Mesoporous Carbon Nitride for Selective Hydrogenation of Acetylene with an Excellence Ethylene Selectivity[J]. Journal of Physics and Chemistry of Solids, 2021, 158(2):110219.

4. Guo Y, Qi H, Su Y, et al. High Performance of Single-atom Catalyst Pd-1/MgO for Semi-hydrogenation of Acetylene to Ethylene in Excess Ethylene[J]. ChemNanoMat, 2021, 7(5):526-529.

5. Guan Q, Yang C, Wang S, et al. Reactive Metal-Biopolymer Interactions for Semihydrogenation of Acetylene[J]. ACS Catalysis, 2019, 9 (12), 11146-11152.

6. Guo Z, Liu Y, Liu Y, et al. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene[J]. Applied Surface Science, 2018, 442(1):736-741.

7. Huang X , Xia Y , Cao Y , et al. Enhancing both selectivity and coking-resistance of a single-atom  $Pd_1/C_3N_4$  catalyst for acetylene hydrogenation[J]. Nano Research, 2017, 10(4):1-11.

8. Wang Q, Zhao J, Xu L, et al. Tuning electronic structure of palladium from wheat flour-derived N-doped mesoporous carbon for efficient selective hydrogenation of acetylene[J]. Applied Surface Science,

2021,562(1):150141.

9. Zhang H , Cao J L , Wu B , et al. An alumina-coated, egg-shell  $Pd/\alpha$ -Al<sub>2</sub>O<sub>3</sub>@SiC catalyst with enhanced ethylene selectivity in the selective hydrogenation of acetylene[J]. Rsc Advances, 2016,6, 57174-57182.