Supplementary Information forw

Rational design of the fabrication of bulk Ni₃Sn₂ alloy catalysts for the synthesis of 1,4-pentanediol from biomass-derived furfural without acidic co-catalyst

Rodiansono,^{*a,b} Atina Sabila Azzahra,^b Pathur Razi Ansyah,^c Sadang Husain,^d and Shogo Shimazu^e

^aDepartment of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia 70714 ^bInorganic Materials & Catalysis Laboratory (IMCat), Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University.

^cDepartment of Physics, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia 70714. ^dDepartment of Mechanical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35 Banjarbaru, Indonesia 70714.

^eGraduate School of Engineering, Chiba University, 1-33 Yayoi, Inage-ku, Chiba, Japan 263-8522 *Corresponding author: <u>rodiansono@ulm.ac.id</u> (R. Rodiansono); Tel./fax.: +625114773112

Contents

- <u>Specific surface area BET (S_{BET}) and average crystallite sizes of Ni₃Sn₂(101) alloy phase bulk Ni-Sn(1.5) synthesized at different parameters</u> (Table S1).
- 2. Identified Ni–Sn alloy phases from bulk <u>Ni–Sn(1.5)</u> after reduction with H_2 at 673-873 K for 1.5 h **(Table S2**).
- 3. Calculated lattice parameters (d/nm) of Ni₃Sn₂ alloy obtained at different pH of Ni-Sn solution. The data referred to the XRD patterns in Fig. 7 (in the text) at $2\theta = \sim 44.2$ (Ni₃Sn₂ (110) phase (**Table S3**).
- 4. XRD patterns of the bulk Ni-Sn(1.5) synthesized at different hydrothermal time of 0-72 h at 423 K followed by reduction with H₂ at 673 K for 1.5 h (**Figure S1**).
- 5. Calculated lattice parameters (d/nm) of Ni_3Sn_2 alloy obtained at different hydrothermal time. The data referred to the XRD patterns in Fig. S1 at $2\theta = ~44.2$ (Ni_3Sn_2 (110) phase (**Table S4**).
- 6. XRD patterns of the as-prepared bulk Ni-Sn(1.5) with different conditions (Figure S2).
- 7. XRD patterns of the bulk Ni-Sn(1.5) synthesized in the presence of polyols (a) ethylene glycol (EG), (b) 2methoxyethanol, and (c) without the addition of polyols during the hydrothermal at 423 K for 24 h, followed by reduction with H_2 at 673 K for 1.5 h (**Figure S3**).
- 8. Calculated lattice parameter (*d* (nm) of Ni₃Sn₂ samples obtained at the effect of EG, methoxy ethanol, and without polyol additives. The data referred to the XRD patterns in Fig. S3 at 2θ = ~44.2 (Ni₃Sn₂ (110) phase (**Table S5**).
- XRD patterns of the bulk Ni-Sn(1.5) synthesized at different temperature of hydrothermal (a) 423 K, (b) 473 K, and (c) 523 K for 24 h followed by reduction with H₂ at 673 K for 1.5 h (Figure S4).
- 10. XRD patterns of bulk Ni-Sn(1.5) after reduction with H₂ at (a) 573 K, (b) 673 K, (c) 773 K, and (d) 873 K for 1.5 h. The plotted data were compared with JCPDS card of #06-414 (Ni₃Sn₂) (**Figure S5**).
- 11. Calculated lattice parameters (d/nm) of Ni_3Sn_2 alloy obtained at reduction temperature. The data referred to the XRD patterns in Fig. S5 at 2θ = ~44.2 (Ni_3Sn_2 (110) phase (**Table S6**)
- 12. XRD patterns of (a) fresh and (b) recovered bulk Ni_3Sn_2 after the 52 h reaction run. $\otimes Ni_3Sn_2$ alloy phase, plotted data were compared with JCPDS card of #06-414 (Ni_3Sn_2) (Figure S6).

1. Results of catalyst characterisation

Table S1. Specific surface area BET (S_{BET}) and average crystallite sizes of Ni₃Sn₂(101) alloy phase of bulk Ni-Sn(1.5) alloy synthesized at different parameters

Entry	Catalyst ^a	S_{BET}^{b} (m ² /g)	D ^c (nm)
1	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 573 K/H ₂)	9.7	14.0
2	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 673 K/H ₂)	70.3	17.0
3	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 773 K/H ₂)	1.7	26.5
4	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 873 K/H ₂)	2.9	28.4
5	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; HT 12 h; 673 K/H ₂)	21.6	13.7
6	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; HT 48 h & 673 K/H ₂)	10.6	19.4
7	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; HT 72 h & 673 K/H ₂)	31.4	16.8
8	Ni ₃ Sn ₂ (EG; pH = 8; 673 K/H ₂)	12.0	16.5
9	Ni_3Sn_2 (without polyol; 673 K/H ₂)	6.92	17.4

^{*a*}The samples Ni₃Sn₂ samples were synthesized at different parameters, unless otherwise stated. ^{*b*} Specific surface are BET (S_{BET}) was derived from N₂ physisorption at 77 K. ^{*c*} Average crystallite sizes of Ni₃Sn₂ (101) alloy phase at 2 θ =30.1° was calculated by using Scherrer's equation.

Table S2. Identified Ni–Sn alloy phases from bulk Ni-Sn(1.5) after reduction with H₂ at 673-873 K for 1.5 h^a

Temperature of H ₂ reduction (K)			
673	773	873	
92% Ni ₃ Sn ₂ alloy phase ^c	89% Ni ₃ Sn ₂ alloy phase ^c	Ni ₃ Sn ₂ (101),Ni ₃ Sn ₂ (002),	
Ni ₃ Sn ₂ (101), Ni ₃ Sn ₂ (002), Ni ₃ Sn ₂ (102),	Ni ₃ Sn ₂ (101), Ni ₃ Sn ₂ (002),	Ni ₃ Sn ₂ (102)	
Ni ₃ Sn ₂ (110), Ni ₃ Sn ₂ (201), Ni ₃ Sn ₂ (112),	Ni ₃ Sn ₂ (102), Ni ₃ Sn ₂ (110),	Ni ₃ Sn ₂ (110),Ni ₃ Sn ₂ (201),	
Ni ₃ Sn ₂ (103), Ni ₃ Sn ₂ (202), Ni ₃ Sn(002),	Ni ₃ Sn ₂ (201), Ni ₃ Sn ₂ (112),	Ni ₃ Sn ₂ (112), Ni ₃ Sn ₂ (103),	
	Ni ₃ Sn ₂ (103), Ni ₃ Sn ₂ (202),	Ni ₃ Sn ₂ (202),Ni ₃ Sn(002),	
	Ni₃Sn(002),		

The samples Ni-Sn(1.5) were synthesized at pH adjustment of 8, temperature hydrothermal of 423 K for 24 h, unless otherwise stated. ^{*a*}Based on the JCPDS-ISSD card of the existing Ni-Sn alloys and JCPDS card number of #06-414 for Ni₃Sn₂ [1,2]. ^{*b*}Values in the parenthesis indicate the Ni/Sn molar ratio. ^{*c*}The Mol% of alloy component was calculated by Multi-Rietveld Analysis Program LH-Riet 7.00 method on the Rietica software.

Table S3 Calculated lattice parameters (d/nm) of Ni_3Sn_2 alloy obtained at different pH of Ni-Sn solution. The data referred to the XRD patterns in Fig. 7 (in the text) at $2\theta = ~44.2$ (Ni_3Sn_2 (110) phase.

Entry	Sample	<i>d ª</i> (nm)
1	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 6; 673 K/H ₂)	0,2057
2	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 673 K/H ₂)	0,2057
3	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 10; 673 K/H ₂)	0,2055
4	Ni₃Sn₂ (2-Me-EtOH; pH = 12; 673 K/H₂)	0,2054

^{*a*}The basal spacing was calculated using Bragg's equation at at $2\theta = 44.2$ (Ni₃Sn₂ (110) phase.

Figure S1. XRD patterns of the bulk Ni-Sn(1.5) synthesized at different hydrothermal time of 0-72 h at 423 K after reduction with H_2 at 673 K for 1.5 h.

Table S4 Calculated lattice parameters (d/nm) of Ni_3Sn_2 alloy obtained at different hydrothermal time. The data referred to the XRD patterns in Fig. S1 at $2\theta = \sim 44.2$ (Ni_3Sn_2 (110) phase.

Entry	Sample	<i>d ª</i> (nm)
1	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 12 h; 673 K/H ₂)	0,2061
2	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 24 h; 673 K/H ₂)	0,2054
3	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 48 h; 673 K/H ₂)	0,2053
4	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 72 h; 673 K/H ₂)	0,2055

^{*a*}The basal spacing was calculated using Bragg's equation at 2θ = ~44.2 (Ni₃Sn₂ (110) phase.

Figure S2. XRD patterns of the as-prepared bulk Ni-Sn(1.5) with different conditions.

Figure S3. XRD patterns of the bulk Ni-Sn(1.5) synthesized in the presence of polyols (a) ethylene glycol (EG), (b) 2-methoxyethanol, and (c) without the addition of polyols during the hydrothermal at 423 K for 24 h, followed by reduction with H_2 at 673 K for 1.5 h.

Table S5 calculated lattice parameter (*d* (nm) of Ni₃Sn₂ samples obtained at the effect of EG, methoxy ethanol, and without polyol additives. The data referred to the XRD patterns in Fig. S3 at $2\theta = \sim 44.2$ (Ni₃Sn₂ (110) phase.

Entry	Sample	d ^a (nm)
1	Ni ₃ Sn ₂ (without polyol; 673 K/H ₂)	0,2056
2	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 673 K/H ₂)	0,2054
3	Ni ₃ Sn ₂ (EG; pH = 8; 673 K/H ₂)	0,2050

^{*a*}The basal spacing was calculated using Bragg's equation at $2\theta = 44.2$ (Ni₃Sn₂ (110) phase.

Figure S4. XRD patterns of the bulk Ni-Sn(1.5) synthesized at different temperature of hydrothermal (a) 423 K, (b) 473 K, and (c) 523 K for 24 h followed by reduction with H_2 at 673 K for 1.5 h.

Figure S5. XRD patterns of bulk Ni-Sn(1.5) after reduction with H_2 at (a) 573 K, (b) 673 K, (c) 773 K, and (d) 873 K for 1.5 h. The plotted data were compared with JCPDS card of #06-414 (Ni₃Sn₂).

Table S6 Calculated lattice parameters (d/nm) of Ni₃Sn₂ alloy obtained at reduction temperature. The data referred to the XRD patterns in Fig. S5 at $2\theta = \sim 44.2$ (Ni₃Sn₂ (110) phase.

Entry	Sample	<i>d ª</i> (nm)
1	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 24 h; 573 K/H ₂)	0,2049
2	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 24 h; 673 K/H ₂)	0,2054
3	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 24 h; 773 K/H ₂)	0,2051
4	Ni ₃ Sn ₂ (2-Me-EtOH; pH = 8; 24 h; 873 K/H ₂)	0,2045

^{*a*}The basal spacing was calculated using Bragg's equation at $2\theta = 44.2$ (Ni₃Sn₂ (110) phase.

Figure S6. XRD patterns of (a) <u>fresh Ni₃Sn₂ pH = 8 and (b) recovered after the fourth reaction run in batch</u> reactor system after reduction with H₂ at 673 K for 1 h. \otimes Ni₃Sn₂ alloy phase, plotted data were compared with JCPDS card of #06-414 (Ni₃Sn₂).