Polythioethers Bearing Side Groups for Efficient Degradation by E1cB Reaction: Reaction Design
 for Polymerization and Main-Chain Scission

Ryo Kawatani, ${ }^{\text {a }}$ Keito Hagiwara, ${ }^{a}$ Anri Tanaka ${ }^{\text {a }}$ and Yasuhiro Kohsaka ${ }^{\text {a,b* }}$
a. Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano386-8567, Japan. Email: kohsaka@shinshu-u.ac.jp
b. Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University.

Electric Supplementary Information

Instruments

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} (Kanto Chemical) and $\mathrm{CD}_{3} \mathrm{CN}$ (Kanto Chemical) on AVANCE NEO (Bruker) spectrometers. Chemical shifts in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referred to the signal of tetramethylsilane (TMS) and solvent $\left(\mathrm{CDCl}_{3}\right)$, respectively. Molecular weight and its distributions were determined at $40{ }^{\circ} \mathrm{C}$ by size-exclusion chromatography (SEC) on an EXTREMA chromatograph (JASCO) equipped with two SEC columns [Shodex HK-404L×2], using tetrahydrofuran (THF containing 3,5-di-tert-butyl-4-hydroxy-toluene, Wako Pure Chemical Industries, for HPLC grade) as an eluent (flow rate $=0.6 \mathrm{~mL}$ min^{-1}), and calibrated against standard polystyrene (PS) samples (TSK-gel oligomer kit, Tosoh, M_{n} : 1.03×10^{6}, $3.89 \times 10^{5}, 1.82 \times 10^{5}, 3.68 \times 10^{4}, 1.36 \times 10^{4}, 5.32 \times 10^{3}, 3.03 \times 10^{3}, 8.73 \times 10^{2}$) and detected with UV (UV4070, JASCO) and RI (RI-4035, JASCO) detectors.

Materials

Methyl acrylate, acetaldehyde, 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,10-decanedithiol, benzyl mercaptan were purchased from Tokyo Chemical Industry Co., Ltd. Sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, pyridine, hexane, ethyl acetate (EtOAc), chloroform (CHCl_{3}), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF), acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, toluene, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), 1,4-dioxane, methanol (MeOH), hydrochromic acid (HCl aq.), 1,8-diazabicyclo[5.4.0.]undec-7-ene, $\mathrm{Et}_{3} \mathrm{~N}$, and iPrNEt were purchased from Fujifilm Wako Pure Chemical Industries, Ltd. Benzoyl chloride was kind gift from Iharanikkei Chemical Industry Co., Ltds.

Synthesis

Methyl 2-(1-hydroxyethyl)acrylate (13b): ${ }^{1}$ Methyl acrylate (25.8 g, 300 mmol) and 1,8diazabicyclo[2.2.2]octane ($11.2 \mathrm{~g}, 100 \mathrm{mmol}$) were added to a solution of acetaldehyde ($4.41 \mathrm{~g}, 100 \mathrm{mmol}$) in a cosolvent of 1,4-dioxane and $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=1 / 1)$ at $25^{\circ} \mathrm{C}$. After 24 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL} \times 2)$. The combined organic layer was washed with brine $(100 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated to yield a crude 13b (6.06 g , yield: 46.2%). The obtained 13b was used in the next reaction without further purification.
${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta / \mathrm{ppm} 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 4.63(1 \mathrm{H}$, quin, $\mathrm{J}=6.50$ $\mathrm{Hz}, \mathrm{CH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{d}, J=5.44 \mathrm{~Hz}, \mathrm{OH}), 1.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.50 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$

Scheme S1. Preparation of 1b.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$. Labels for assignments are corresponding to Scheme 1.

Methyl 2-(1-benzoyloxyethyl)acrylate (1b): ${ }^{1}$ Pyridine ($4.35 \mathrm{~g}, 55.0 \mathrm{mmol}$) was added to a solution of $\mathbf{1 b}$ (6.51 $\mathrm{g}, 50.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the solution of benzoyl chloride ($\left.9.14 \mathrm{~g}, 65.0 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise to the mixture at $0{ }^{\circ} \mathrm{C}$. After 1 h , the mixture was stirred at room temperature for 24 h . Then, $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, and the organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 2)$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield crude $\mathbf{1 b}$. The crude product was purified by distillation under reduced pressure using a glass tube oven (Kugel Rohr, 10 Torr/ $170^{\circ} \mathrm{C}, 7.62 \mathrm{~g}, 65.1 \%$).
${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta /$ ppm $8.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.63 \mathrm{~Hz}, \mathrm{CH}), 7.59-7.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.45(2 \mathrm{H}$, $\mathrm{t}, J=7.63 \mathrm{~Hz}, \mathrm{CH}), 6.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 5.96\left(1 \mathrm{H}, \mathrm{q}, J=6.53 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.55$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.53 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$

Methyl 2-(hydroxy(phenylmethyl))acrylate (13c): Methyl acrylate (25.8 g, 300 mmol) and 1,8diazabicyclo[2.2.2]octane ($6.50 \mathrm{~g}, 57.9 \mathrm{mmol}$) were added to a solution of benzaldehyde ($31.8 \mathrm{~g}, 300 \mathrm{mmol}$) in cosolvent of 1,4 -dioxane and $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=1 / 1,10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After $24 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL} \times 2)$. The organic layer was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and washed with hexane to yield a crude $13 \mathrm{c}(17.8 \mathrm{~g}$, yield: 30.9%). The obtained 13c was used in the next reaction without further purification.
${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta / \mathrm{ppm} 7.40-7.33(4 \mathrm{H}, \mathrm{m}), 7.31-7.26(1 \mathrm{H}, \mathrm{m}), 6.34(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=)$, $5.83(1 \mathrm{H}, \mathrm{t}, J=1.22 \mathrm{~Hz}, \mathrm{CH}=), 5.57(1 \mathrm{H}, J=5.73 \mathrm{~Hz}, \mathrm{CHOH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.99(1 \mathrm{H}, \mathrm{d}, J=5.73 \mathrm{~Hz}, \mathrm{OH})$

Methyl 2-(benzoyloxy(phenylmethyl))acrylate (1c): Pyridine ($5.14 \mathrm{~g}, 65.0 \mathrm{mmol}$) was added to a solution of 13c $(9.61 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , a solution of benzoyl chloride $(9.14 \mathrm{~g}, 65.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added dropwise to the mixture at $0{ }^{\circ} \mathrm{C}$. After 1 h , the mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 24 h . Then, $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$, and the organic layer was collected. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 2)$. The combined organic layers were washed with 0.1

M HCl aq ($150 \mathrm{~mL} \times 2$) and brine (150 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield crude 3-4. The rude product was purified on silica gel column chromatography (hexane/EtOAc $=5 / 1, \mathrm{v} / \mathrm{v}$) using Wakogel C-400HG (280 g) and recrystallization in hexane $(4.44 \mathrm{~g}$, yield: 30.0\%).
${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta / \mathrm{ppm} 8.09-8.07(2 \mathrm{H}, \mathrm{m})$, 7.55-7.59 (1H, m), 7.49-7.42 (4H, m), 7.38-7.29 (3H, m), $6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CCH}), 6.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 5.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.07 \mathrm{~Hz}, \mathrm{CH}=), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$,

Scheme S2. Preparation of 1c.

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$. Labels for assignments are corresponding to Scheme 1.

Model experiment: A typical procedure is shown (Table 1, Entry 4). A solution of benzyl mercaptan (6, 8.1 $\mathrm{mg}, 0.072 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was added to a solution of $\mathbf{1 b}(14 \mathrm{mg}, 0.060 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.2 \mathrm{~mL})$. Then, DABCO ($0.22 \mathrm{mg}, 0.020 \mathrm{mmol}$) was added to the mixture at $25^{\circ} \mathrm{C}$. The reaction mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Polymerization: A typical procedure is shown (Table 2, Entry 2). A solution of 1,10-decanedithiol ($\mathbf{2}, 0.155$ $\mathrm{g}, 0.750 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.55 \mathrm{~mL})$ and a solution of DABCO ($\left.0.101 \mathrm{~g}, 0.900 \mathrm{mmol}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(0.20 \mathrm{~mL})$ was added to $1 \mathrm{c}(0.222 \mathrm{~g}, 0.750 \mathrm{mmol})$. After $1 \mathrm{~h}, \mathrm{Bu}_{3} \mathrm{P}(0.0304 \mathrm{~g}, 0.150 \mathrm{mmol})$ was added to the reaction mixture. After 24 h , the reaction mixture was poured into $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{~mL})$. The precipitate was collected by centrifugation and dried in vacuo to afford a polymer ($7.8 \mathrm{mg}, 27 \%$).

Degradation of 4c: A typical procedure is shown. A solution of DBU ($6.3 \mathrm{mg}, 0.041 \mathrm{mmol}$) in DMF (1.0 mL) was added to $\mathbf{4 c}$ (Entry $7, M_{\mathrm{n}}=5600, ~ Đ=2.10,12.6 \mathrm{mg}, 0.0331 \mathrm{mmol}$ for the repeating unit). After 17 h , small portion of reaction mixtures was sampled to monitor by ${ }^{1} \mathrm{H}$ NMR spectrometry and SEC.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum in Table 1, Entry 2. $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) .{ }^{*}$: CHCl_{3}

Fig. S4. $\quad{ }^{1} \mathrm{H}$ NMR spectral changes in Table 1, Entry 3 at each time ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C},{ }^{*}$: $\left.\mathrm{CHCl}_{3}, \bullet: 6\right)$

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ and the reaction mixture in Entries $3-8$ in Table $1\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ and the reaction mixture in Entries $9-13$ in Table $1\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture of $\mathbf{1 c}, \mathbf{2}, \mathrm{DABCO}$ and PBu_{3} (a) before adding $\mathrm{DABCO},(\mathrm{b}) 1 \mathrm{~h}$ after adding DABCO and (c) 16 h after adding $\mathrm{PBu} \mathrm{u}_{3}$. (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$).

Fig. S8. ${ }^{1} \mathrm{H}$ NMR spectrum of the product in Entry $6\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right){ }^{*}: \mathrm{CHCl}_{3}$

Fig. S9. Time-dependent SEC trace of polycondensation of $\mathbf{1 c}$ and $\mathbf{2}$ with DBU

Fig. S10. Time-dependent SEC trace of polycondensation of $\mathbf{1 c}$ and $\mathbf{2}$ with DBU for 24 h , and then, $\mathrm{Bu}_{3} \mathrm{P}$ for 5 h .

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture of $\mathbf{1 c}, \mathbf{2}, \mathrm{DABCO}$ and PBu_{3} (a) before adding DABCO, (b) 1 h after adding DABCO and (c) 16 h after adding $\mathrm{PBu} \mathrm{u}_{3}$. (400 MHz , $\mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$).

Fig. S12. Time-dependent SEC trace of polycondensation of $\mathbf{1 c}$ and $\mathbf{2}$ with DABCO for $\mathbf{1} \mathbf{h}$, and then, DBU for $\mathbf{1} \mathbf{h}$, followed by PBu ${ }_{3}$ for 22 h .

Reference

1 G. Poklukar, M. Stephan and B. Mohar, Adv. Synth. Catal., 2018, 360, 2566.

