Supplementary Information

Development of low-cost tissue paper-based chemosensor and demonstration for selective detection of Cu²⁺ and Hg²⁺ ions

Bharathkumar Thangaraj,^a Marimuthu Ponram,^a Suresh Ranganathan,^{b,c} Sambath Baskaran,^d Ravichandran Cingaram,^a Sathiyanarayanan Kulathu Iyer,^e and Karthikeyan Natesan Sundaramurthy^{* a}

^aDepartment of Chemistry, Easwari Engineering College, Chennai 600 089, India.

^bCentre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, India.

^cDepartment of Chemistry, Karpagam Academy of Higher Education, Coimbatore, India.

^dDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

^eSchool of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632 014, India.

*Corresponding author: Email id: karthikeyan.ns12@gmail.com

Table of CONTENTS

- Fig. S1. The ¹H NMR spectra of intermediate 1
- Fig. S2. The ¹³C NMR spectra of intermediate 1
- Fig. S3. The HR-MS spectra of intermediate 1
- Fig. S4. The ¹HNMR spectra of **DPICDT**
- Fig. S5. The ¹³CNMR spectra of DPICDT
- Fig. S6. The HR-MS spectra of DPICDT
- Fig. S7. Changes in fluorescence intensity of **DPICDT** in THF on the addition of DMSO.
- Fig. S8. Job's plot for DPICDT Vs Cu^{2+} and Hg^{2+} in CH_3CN : H_2O (8:2, v/v)
- Fig. S9. The HR-MS spectra of DPICDT-Cu²⁺
- Fig. S10. The HR-MS spectra of DPICDT-Hg²⁺
- Fig. S11. B–H plot of the 1: 1 complex of probe DPICDT with Cu²⁺and Hg²⁺ ions
- Fig. S12. Linear plot of fluorescence intensity versus concentration of Cu²⁺ and Hg²⁺ ions
- Fig. S13. FT-IR spectra of probe DPICDT, DPICDT-Cu²⁺ and DPICDT-Hg²⁺ (ClO₄)₂.
- Fig. S14. AAS spectrum of DPICDT with Cu²⁺ and Hg²⁺

Fig.S1. The ¹H NMR spectra of intermediate 1

Fig.S2. The ¹³C NMR spectra of intermediate 1

Spectra

Fig.S4. The ¹HNMR spectra of DPICDT.

Fig.S5. The ¹³C NMR spectra of DPICDT.

Fig.S6. The HR-MS spectra of DPICDT.

Fig.S7. Changes in fluorescence intensity of DPICDT in THF on the addition of DMSO.

Fig. S8. Job's plot for DPICDT Vs Cu^{2+} (a) and DPICDT Vs Hg^{2+} (b) in CH_3CN : H_2O (8:2, v/v).

Fig.S9. The HR-MS spectra of DPICDT-Cu²⁺

Fig.S10. The HR-MS spectra of DPICDT-Hg²⁺

Fig. S11. (a) B–H plot of the 1: 1 complex of probe DPICDT and Cu²⁺ ions (b) B–H plot of the 1: 1 complex of probe DPICDT and Hg²⁺ ions.

Fig. S12. (a) Linear plot of fluorescence intensity versus concentration of Cu2+ ions (b) Linear plot of fluorescence intensity versus concentration of Hg2+ions

Fig. S13. (a) FT-IR spectra of probe DPICDT (b) DPICDT + Cu^{2+} (c) DPICDT + $Hg2^+$

Fig. S14. (a) AAS spectrum calibration plot of the DPICDT with Cu^{2+} (b) DPICDT with Hg^{2+}

Table-S1

Recent literature reports on copper.

S.No	Various substituted core	LOD	Solvent system used	Reversibility	Paper strip studies	Metal extraction	Ref.
1	Schiff-base-based sensor	0.62 μM	50% ethanol/tris-HCl buffer solution (pH = 7.40)	Done	Done	-	1
2	Naphthaldehyde- pyridoxal based sensor	32.9 nM	DMSO/ HEPES (pH = 7.40)	Done	Done	-	2
3	Pyridine-2,6- dicarboxamide-based sensor	1.49 μM	Pure CH₃CN	Done	-	-	3
4	Diaminebenzene- based sensor	15 nM	Pure CH₃CN	-	-	-	4
5	1,5- Dihydroxyanthraquino ne-based sensor	10 nM	Ethanol	Done	-	-	5
6	Schiffbase-based sensor	1.8 µM	Methanol - tris-HCl buffer	Done	-	-	6
7	1,8-naphthalimide sensor	17 nM	(CH₃CN: H₂O) (9.7:0.3) (v\v)	-	-	-	7
8	Triphenylamine benzothiazole-based sensor	0.45 μM	Pure CH₃CN	-	Done	-	8
9	DPICDT (Present work)	15.1 nM	(CH₃CN: H₂O) (8:2) (v\v)	Done	Done	Done	

Table-S2

Recent literature reports of mercury.

S.No	Various substituted core	LOD	Solvent system used	Reversibility	Paper strip studies	Extraction of metals	Ref.
1	Naphthalene based sensor	4.92 μM	DMSO/buffer (99/1, v/v)	-	-	-	9
2	Chitosan-BODIPY- based sensor	1.51 μM	Aqueous acetic acid	-	-	-	10
3	Rhodamine-based sensor	3.36 µM	CH_3CN/H_2O (v/v:9/1 with HEPES buffer)	-	-	-	11
4	Dipicolylaminoquinolin e based sensor	1.01 µM	NaOAc-AcOH buffer pH = 5.9	Done	-	-	12
5	Squaraine- bis(Rhodamine-B)- based sensor	6.48 μM	CH ₃ CN	Done	-	-	13
6	Naphthalimide based sensor	2.0 μM	Tris-HCl buffer (ethanol/water = 1:1, v/v, pH 7.01)	Done	-	-	14
7	DPICDT (Present work)	1.17 μM	(CH₃CN: H₂O) (8:2) (v\v)	Done	Done	Done	

References

- 1 H. Liu, S. Ding, Q. Lu, Y. Jian, G. Wei and Z. Yuan, 2022, ACS omega, 7, 7585-7594.
- 2 V. Bhardwaj, S.A. Kumar and S.K. Sahoo, 2022, Microchem. J., 178,107404.
- 3 H. Rahimi, R. Hosseinzadeh and M. Tajbakhsh, 2022, J. Photochem. Photobiol. A, 407, 113049.
- 4 A. Kuwar, R. Patil, A. Singh, S.K. Sahoo, J. Marek and N. Singh, 2015, J. Mater. Chem. C., 3, 453-460.
- 5 S. Mohandoss, J. Sivakamavalli, B. Vaseeharan and T. Stalin, 2016, Sens. Actuators B Chem., 234, 300-315.
- 6 A.K. Manna, M. Sahu, K. Rout, U.K. Das and G.K. Patra, 2020, Microchem. J., 157, 104860.
- 7 S.N.K. Elmas, F.N. Arslan and D. Aydin, 2022, Anlst., 147, 2687-2695.
- 8 D. Li, A. Liu, Y. Xing, Z. Li, Y. Luo, S. Zhao, L. Dong, T. Xie, K. Guo and J. Li, 2023, Dyes Pigm., 213, 111180.
- 9 H. Kim, M. Lee, J.J. Lee, E.K. Min, K.T. Kim and C. Kim, 2022, J. Photochem. Photobiol. A., 428, 113882.
- 10 D. Wang, L. Marin and X. Cheng, 2022Int. J. Biol. Macromol., 198, 194-203.
- 11 S. Bayindir, 2019, , J. Photochem. Photobiol. A, 372, 235-244.
- 12 W. Paisuwan, P. Rashatasakhon, V. Ruangpornvisuti, M. Sukwattanasinitt, and A. Ajavakom, 2019, Sens. Bio-Sens., 24, 100283.
- 13 S. Lee, B.A. Rao and Y.A. Son, 2015, Sens. Actuators B Chem., 210, 519-532.
- 14 X.F. Wu, Q.J. Ma, X.J. Wei, Y.M. Hou and X. Zhu, 2013, Sens. Actuators B Chem., 183, 565-573.