Supplementary Material

Photocatalytic Performance of Biochar Modified TiO₂ (C/TiO₂) on Ammonia Nitrogen Removal

Jiawei Wang^a, Guoqiao Wang^a, Tian Yu^a, Nengjie Ding^a, Meicheng Wang^b Yao Chen^{*a}

(*aCollege of Architecture and Environment, Sichuan University, Chengdu 610065, China.*

^bChina Construction Third Engineering Bureau Group Co., Ltd, Wuhan 430000, China..)

*Corresponding author, *College of Architecture and Environment, Sichuan University, Chengdu 610065, China.* Tel: 86-28-8540 3016, Fax: 86-28-8540 5613,

Email: <u>chenyao@scu.edu.cn</u> (Y.Chen)

Standard methods for determination of NH₃-N, NO₃⁻ and NO₂⁻ concentration

Determination of NH_3 -N concentration is in accordance with the standard method HJ 535–2009 (Nessler's reagent spectrophotometry). NH_3 -N reacts with Nessler reagent to form a light red brown complex. The absorbance of the complex is proportional to the content of NH_3 -N and measured at the wavelength of 420 nm.

The standard method HJ/T346-2007 (Water Quality-Determination of nitratenitrogen Ultraviolet spectrophotometry) is used to determine the concentration of NO_3^- . NO_3^- and dissolved organic matter are quantitatively determined by the absorption of nitrate ions at a wavelength of 220 nm. While nitrate ions are not absorbed at 275 nm. Therefore, another measurement at 275 nm can be used to correct the nitrate nitrogen value.

GB 7493-87 (Water Quality-Determination of nitrogen(nitrite)-Spectrophotometric method) is used to determine the concentration of NO_2^{-} . In phosphoric acid medium, NO_2^{-} in the sample reacts with 4-aminobenzenesulfonamide to form diazonium salt at pH=1.8. It will couple with N-1-Naphthylethylenediamine dihydrochloride to generate a red dye, and the absorbance is measured at 540 nm. If a cuvette with an optical path length of 10 mm is used, and the concentration of NO_2^{-} is within 0.2 mg/ L, its colour conforms to Beer-Lambert Law.

Preparation of C/TiO₂

Sewage sludge was collected from a municipal wastewater treatment plant in Sichuan Province (China) and had undergone traditional secondary biological treatment, gravity condensation and mechanical dewatering processes. Raw sludge was first dried in an oven (105° C, 5 d) and then ground into powder through a 160-mesh sieve and stored for further use. The chemical reagents of zinc chloride (ZnCl₂) and sulfuric acid (H₂SO₄) were used as activator.

References

[22] He, L., Wang, G., Zhang, X., Zhang, Y., and Chen, Y. (2020). "Lanthanum-doped activated carbon derived from municipal sludge for enhanced defluoridation: characteristics and mechanism." Water Sci Technol, 82(8), 1643-1652.

[23] Wang, G., Wang, J., Yu, T., Guo, X., and Chen, Y. (2022). "Efficient removal of humic acid in water using a novel TiO2 composite with biochar doping." RSC Advances, 12(49), 31966-31975.

Fig.S1 Spectrogram of Xenon Lamp

1-a high pressure xenon lamp, 2-an exterior circulation cooling water system, 3-a magnetic stirrer, 4-dilute sulphuric acid, 5-phenolphthalein solution,6-water-circulation multifunction vacuum pump

Fig.S2 Schematic diagram of the reaction system reaction

Application of C/TiO₂ on NH₃-N removal in nature waters

After initial assessment of natural samples, the samples were spiked with known concentrations of NH_4Cl to check the removal efficiency in real applications. Jiang'an River: $NH_3-N=1.44$ mg/L, pH=7.44, TOC=3.99 mg/L

Mingyuan Lake: NH₃-N=1.68 mg/L, pH=7.81, TOC=2.95 mg/L

1 g/L C/TiO₂ and commercial TiO₂ were added into 100 mL natural water respectively, with adding a certain amount of NH₄Cl. Thus, the initial concentration of NH₃-N in Jiang'an River and Mingyuan Lake were adjusted to 59.16 mg/L and 64.95 mg/L, respectively. and the photocatalytic reaction was carried out under a Xenon lamp (AM1.5, high light intensity) for 1 h. Then, samples were taken out and filtered at designed time intervals, and NH₃-N concentration of the supernatant was analyzed and discussed.