Enzyme and pH dual responsive linear-dendritic block copolymer micelles based on a phenylalanyl-lysine motif and peripherally ketal-functionalized dendron as potential drug carriers

Yujia Wang,[‡] Wenjie Song,^{‡1} Lijun Bao, Junwu Wei,

Yangyang Qian, Yunmei Bi* College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, P.R. China

¹ ‡ These authors contributed equally to this work.

^{*}E-mail: <u>yunmeibi@hotmail.com</u>

Spectroscopic Characterization

Fig. S1 ¹H NMR spectrum of PNVP-Phe-Lys-*b*-G₁ in CDCl₃.

Fig. S2 ¹H NMR spectrum of PNVP-Phe-Lys-*b*-G₂ in CDCl₃.

Fig. S3 PNVP-Phe-Lys-*b*-G₃ micelle solutions before and after the incubation with trypsin solution (75 μ M) in 37 °C for 48 h.

Fig. S4 Nile red loaded PNVP-Phe-Lys-*b*- G_n (n=1-3) micelle solutions (a) and after the incubation with different concentrations of trypsin (0 μ M, 25 μ M, 75 μ M) at 37 °C for 48 h ((b) for PNVP-Phe-Lys-*b*- G_1 , (c) for PNVP-Phe-Lys-*b*- G_2 , (d) for PNVP-Phe-Lys-*b*- G_3).

Fig. S5 The particle size of Nile red loaded micelles formed by PNVP-Phe-Lys-b-G₁ (a), PNVP-Phe-Lys-b-G₂ (b) and PNVP-Phe-Lys-b-G₃ (c) after the incubation with different concentrations of trypsin (0 µm, 25 µM and 75 µM).

Fig. S6 Fluorescence spectra of Nile red in PNVP-Phe-Lys-b-G₁ micelles at pH 7.4 and pH 5.0.

Fig. S7 Fluorescence spectra of Nile red in PNVP-Phe-Lys-*b*-G₂ micelles at pH 7.4 and pH 5.0.

Fig. S8 The particle size of PTX-loaded micelles formed by PNVP-Phe-Lys-b-G₃.