## **Electronic Supplementary information**

## Synergistic activation of persulfate by manganese cobalt oxide/reduced graphene oxide nanocomposite with enhanced degradation of trichloroethylene

Lu Zhang<sup>a, b</sup>, Pengfei Ji<sup>a</sup>, Rui Song<sup>a</sup>, Jiayuan Li<sup>a</sup>, Kaifeng Qin<sup>b</sup> and Gang Xu<sup>\*a, b</sup>

<sup>a</sup>School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P.R. China.

<sup>b</sup>Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, P.R. China.

† Gang Xu, E-mail addresses: xugang@shu.edu.cn

**Computational Details.** Density functional theory (DFT) calculations were performed by using the Vienna ab Initio simulation package (VASP). The projector augmented wave (PAW) potentials and generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional were used for the electron-ion interaction and exchange-correlation energy, respectively. The cutoff energy of the plane wave basis was set to 400 eV. The convergence criteria for the total energy and force were set to  $10^{-5}$  eV and 0.02 eV Å<sup>-1</sup>, respectively. The DFT-D3 correction method was used to describe the van der Waals (vdW) interaction. A vacuum distance of at least 15 Å in the z direction was imposed to eliminate the interactions between the periodic images.



Fig. S1 Potential diagrams of (a)  $MnCo_2O_4$  (311) and (b) rGO surface obtained from first-principles simulations.



**Fig. S2** Energy band diagrams of  $MnCo_2O_4$  and rGO contacts:  $E_{vac}$ , vacuum energy; Ec, energy of conduction band minimum; Ev, energy of valence band maximum;  $W_f$ ,  $MnCo_2O_4$ ,  $MnCo_2O_4$  work function;  $W_{f}$ , rGO, rGO work function;



**Fig. S3** Charge density difference of MnCo<sub>2</sub>O<sub>4</sub> and rGO. The blue, purple, red, and brown represent the elements of cobalt, manganese, oxygen and carbon, respectively.



Fig. S4 The GC-MS spectrum of TCE degradation