Supporting Information

Alkyne-tethered oligodeoxynucleotides that allow simultaneous detection of multiple DNA/RNA targets using Raman spectroscopy

Hikaru Watanabe, Daigo Maehara, Tatsuya Nishihara and Kazuhito Tanabe*

Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan

Table of Contents		
Materials		S2
Figure S1	Electrophoretic mobility shift assay for strand displacement	
	Reaction of ODN 2 / RP 2 duplex	S 4
Figure S2	Raman spectra of G-ODN 1 / RP 1 in the presence of	
	mismatched target	S5
Figure S3	HPLC of ODNs	S 6
Supporting references		S 7

Materials

General. Reagents were purchased from Wako pure chemical industries, Tokyo chemical industries, Sigma Aldrich, nacalai tesque, GLEN RESEARCH and eurofins Genomics. MALDI-TOF mass spectrometry were recorded on an AXIMER-LNR spectrometer (SHIMADU). Raman spectrum measurement was carried out on a RENISHAW inVia Raman Microscope. DNA synthesis was performed with a 3400 DNA synthesizer (Applied Biosystems). Analytical and preparative High-performance liquid chromatographies were carried out with a D2000 HPLC system (HITACHI) and L7000 HPLC system (HITACHI) with a reversed phase column (inertsil ODS-3, GL Science Inc., ϕ 10 mm×250 mm, ϕ 4.6 mm×250 mm). The column eluents were monitored by the UV absorbance at a flow rate of 0.6 (analysis) or 3.0 (preparative) mL min⁻¹ with a 0-30% (over 60 min), 30-100% (over another 30 min) gradient of ACN/TEAA buffer (100 mM, pH 7.0). Compounds d^{Ph}U,¹ d^{TMS}U,² d^HU,¹ DMTr-d^{Ph}U¹ and DMTr-d^HU¹ were synthesized by reported procedure. Human lung carcinoma cell line, A549, was purchased from JCRB cell bank (Japanese Collection of Research Bioresources Cell Bank). The cells were incubated using CO₂ incubator (MCO-18AIC, SANYO) at 37 °C in 5% CO₂.

Synthesis of RP 1 (General procedure for the synthesis of ODNs). N,N-diisopropylethylamine (40 μ l, 0.24 mmol) and 2-cyanoethyldiisoproryl-chlorophosphor-amidite (21 μ l, 0.10 mmol) were added to compound (^{Ph}U-DMTr, 30 mg, 0.048 mmol) in anhydrous acetonitrile (595 μ l) and

stirred for 2 h at room temperature. After the reaction, the mixture was filtered and placed on DNA synthesizer. After automated DNA synthesis, RP 1 was purified by reversed phase HPLC. The purity and concentration of the oligomers were determined by complete digestion with AP, P1 and phosphodiesterase I at 37 °C for 6 h. Identities of synthesized oligomers were identified by MALDI-TOF mass spectrometry (RP 1: $[M - H]^-$ calcd. 6784.2, found 6784.3, RP 2: $[M - H]^-$ calcd. 7810.3, found 7810.5).

Figure S1. Electrophoretic mobility shift assay to identify strand displacement reaction of ODN 2 / RP 2 duplex by T 2 target. ODNs bearing alkyne tags (RP 2) were hybridized with their complementary strand (ODN 2). Then, T 2 was added to the sample and the resulting sample was loaded into 10% polyacrylamide gel. Lane 1, single stranded ODN 2; lane 2, single stranded RP 3; lane 3, single stranded T 2; lane 4, RP 2 / T 2 duplex; lane 5, ODN 2 / RP 2 partial duplex; lane 6, Addition of T 2 to ODN 2 / RP 2 partial duplex to form RP 2 / T 2 duplex and single stranded ODN 2.

Figure S2. Change of Raman signal by strand displacement reaction of ODNs. The $d^{TMS}U$ (3 mM) was used as internal standard (I.S.). The Raman spectra were measured using 532 nm excitation. (A) Raman spectra of G-ODN 1 / RP 1 (0.1 μ M) before or after addition of T 1, M 1 or M 2 (purple: without addition of target, blue: 20 μ M T 1, green: 20 μ M M 1, red: 20 μ M M 2). (B) Relative intensity of the Raman signal of G-ODN 1 / T 1 in the presence of target. The data of signal intensity were obtained from Figure S2A.

Figure S3. Characterization of ODNs synthesized in this study. HPLC chromatograms and MALDI-TOF MS data for RP 1 (A) and RP 2 (B). HPLC gradients: (A) MeCN in 0.1 M TEAA buffer from 0% to 30% over 60 min. (B) MeCN in 0.1 M TEAA buffer (pH 7.0) from 0% to 30% over 60 min.

References

- Itaya, R.; Idei, W.; Nakamura, T.; Nishihara, T.; Kurihara, R.; Okamoto, A.; Tanabe, K. Changes of C≡C triple bond vibration that disclosed non-canonical cytosine protonation in i-motif-forming oligodeoxynucleotides. *ACS Omega* 2021, 6, 31595–31604.
- MSlavíčková, M.; Janoušková, M.; Šimonová, A.; Cahová, H.; Kambová, M.; Šanderová,
 H.; Krásný, L.; Hocek, M. Turning off transcription with bacterial RNA polymerase
 through CuAAC click reactions of DNA containing 5-ethynyluracil. *Chem. Eur. J.* 2018, 24, 8311–8314.