Electronic Supplementary Information

Highly sensitive capacitance-based nitrite sensing using

polydopamine/AuNPs-modified screen-printed carbon electrode.

Faisal K. Algethami,^a*Amal Rabti,^{b,c} Mohamed Mastouri,^b Babiker Y. Abdulkhair^a, Sami Ben Aoun,^d and Noureddine Raouafi^c*

^aDepartment of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623, Saudi Arabia.

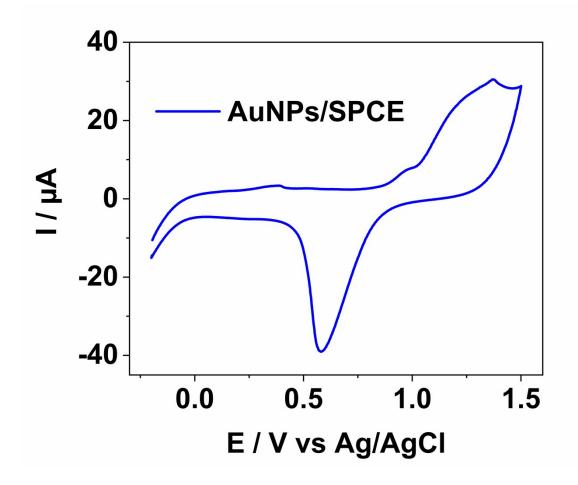
^bNational Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia.

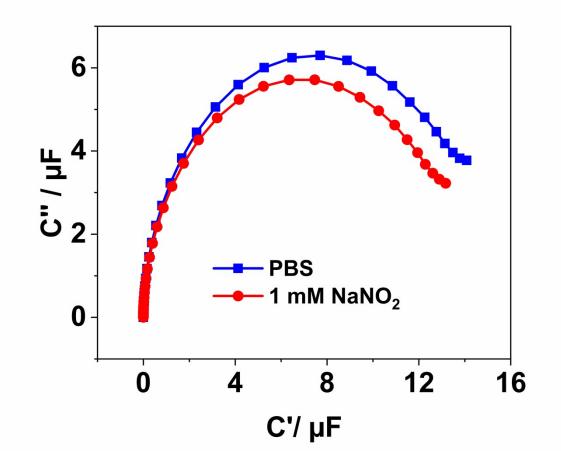
^cSensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092 Tunis, Tunisia.

^dDepartment of Chemistry, Faculty of Science, Taibah University, P.O Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia.

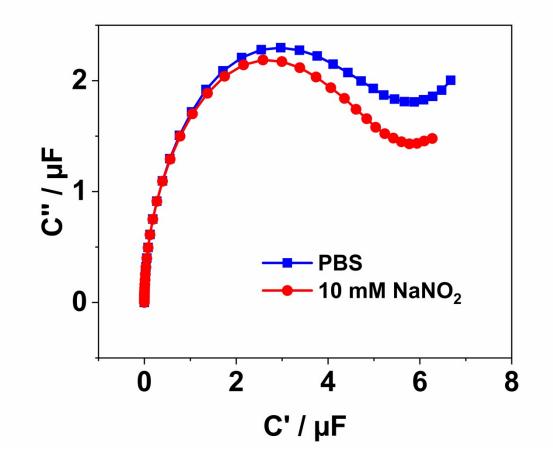
*Corresponding author Email: <u>noureddine.raouafi@fst.utm.tn</u> (Noureddine Raouaf<u>i</u>), <u>falgethami@imamu.edu.sa</u> (Faisal K. Algethami).

Surface area determination Figure S2 Figure S3
Figure S3
El anno SA
Figure S4
Figure S5
Figure S6
Figure S7
Figure S8




Figure S1. CV responses of AuNPs/SPCE in 0.5 M H_2SO_4 solution at the scan rate of 0.1 $V \cdot s^{-1}$.

Surface area determination


In order to calculate the surface area of SPCE, AuNPs/SPCE and pDA/AuNPs/SPCE, CVs of 5.0 mM [Fe(CN)₆]^{3/4-} (the diffusion coefficient $D = 6.7 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$) were recorded. Using Randles–Sevcik equation (Eq. 1):

$$i_p = 2.69 \times 10^5 \text{ n}^{3/2} \text{ A } \text{D}^{1/2} \text{ v}^{1/2} \text{ C}$$
 (Eq. 1)

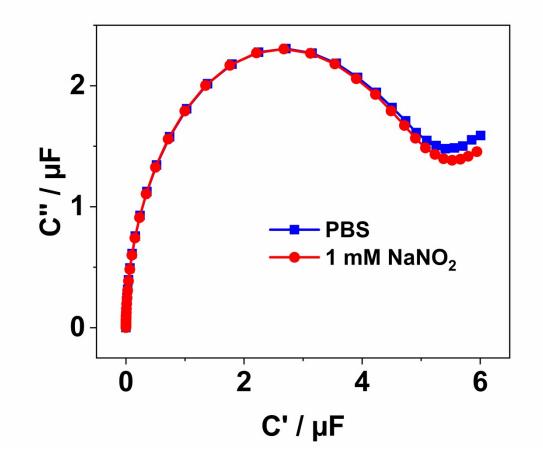

Where n is the number of electrons involved in the redox reaction, A is the effective area (cm^2) , D is the diffusion coefficient of the redox molecule in solution $(cm^2 \cdot s^{-1})$, v is the scan rate $(V \cdot s^{-1})$ and C is the bulk concentration of the probe molecule, the effective surface area of the SPCE, AuNPs/SPCE and pDA/AuNPs/SPCE were estimated to be 0.045 cm², 0.048 cm² and 0.051 cm², respectively. The increases of active surface areas compared to bare SPCE were 8 % and 13 % for AuNPs/SPCE and pDA/AuNPs/SPCE, respectively, demonstrating the higher electrochemical activity of the modified electrodes.

Figure S2. Capacitance Nyquist plots of AuNPs/SPCE in the absence and presence of 1 mM NaNO₂ in 0.01 M PBS (pH 7.0).

Figure S3. Capacitance Nyquist plots of PDA/SPCE in the absence and presence of 1 mM NaNO₂ in 0.01 M PBS (pH 7.0).

Figure S4. Capacitance Nyquist plots of SPCE in the absence and presence of 1 mM NaNO₂ in 0.01 M PBS (pH 7.0).

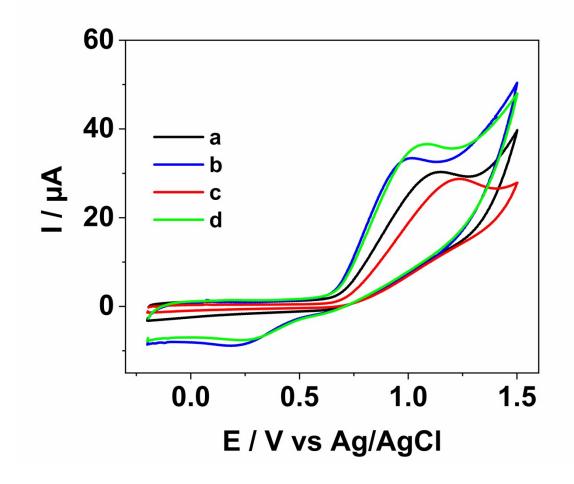


Figure S5. CVs of (a) SPCE, (b) AuNPs/SPCE, (c) pDA/SPCE and (d) pDA/AuNPs/SPCE in the presence of 1 mM NaNO₂ at a scan rate of 100 mV·s⁻¹ in 0.01 M PBS (pH 7.0).

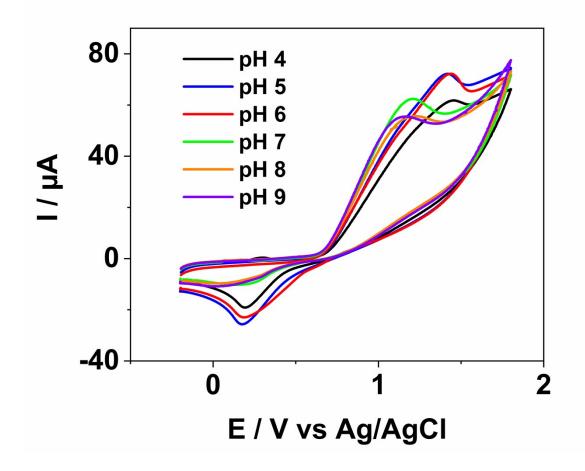


Figure S6. CVs of pDA/AuNPs/SPCE SPCE in the presence of 1 mM NaNO₂ at a scan rate of 100 mV·s⁻¹ in 0.01 M PBS at different pH.

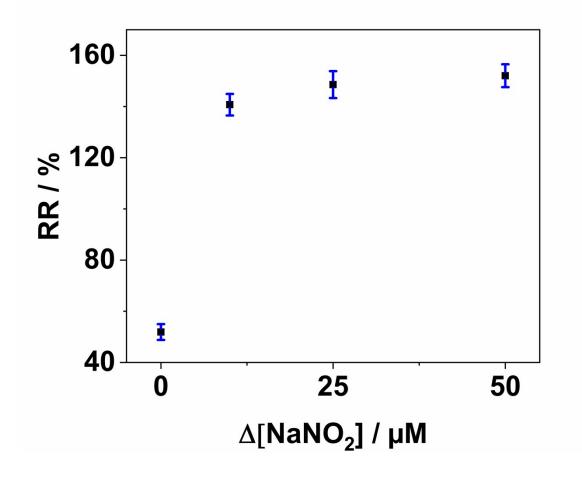
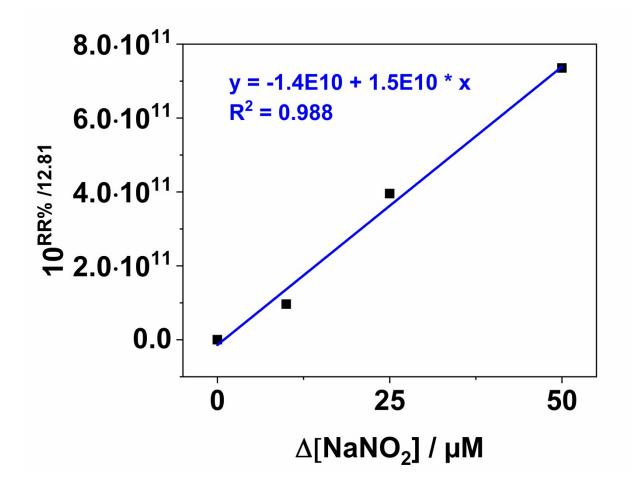



Figure S7. The relative variation of redox capacitance RR% vs. Δ [NO₂⁻] obtained in salami spiked samples.

Figure S8. Graph of the proposed standard addition method application for nitrite determination in salami sample.