Supporting Information

Microwave absorbing characteristics of porphyrin derivates: A loop of

conjugated structure

Haniyeh Dogari^a, Reza Peymanfar^{*b, c, d}, Hossein

Ghafuri *a

^a Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry,

Iran University of Science and Technology, 16846-13114 Tehran, Iran

^b Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran

^c Iranian Society of Philosophers, Department of Science, Tehran, Iran

^d Peykareh Enterprise Development CO., Tehran, Iran

*E-mail: reza_peymanfar@alumni.iust.ac.ir, ghafuri@iust.ac.ir

1. Characterization

1. 1. H-NMR analysis

Fig. S1. H-NMR spectrum of TAPP sample

1. 2. Microwave absorbing features

for the porphyrin derivates from 8.2 to $18~\mathrm{GHz}$

Entry/title:	Equation/s:
1/Kubelka–Munk	$(\alpha h\nu)^2 = h\nu - Eg$, $\alpha = -1/t \ln T$, and $T = 10^{-A}$
theory	
2/Transmission line	$\mu_{r}(dP) = 20L_{r}\left[\frac{Z_{in} - Z_{0}}{Z_{in}}\right] = \frac{\mu_{r}}{Z_{in} - Z_{0}} \left[\frac{1}{Z_{in} - Z_{0}}\right] = \frac{\mu_{0}}{Z_{in} - Z_{0}}$
theory	$R(aB) = 20L0g \left \overline{Z_{in} + Z_0} \right , Z_{in} = \sqrt{\varepsilon_r} \operatorname{tann} \left[J \sqrt{\mu_r} \varepsilon_r J \left(\overline{c} \right)^a \right], Z_0 = \sqrt{\varepsilon_0},$
	$\varepsilon_r = \varepsilon' - j\varepsilon'', \text{ and } \mu_r = \mu' - j\mu''$
2/0110#10#	nc
5/Quarter	$t_m = \frac{nc}{1 - \frac{1}{n}}$
wavelength	$4f_{m\sqrt{ \varepsilon_r \mu_r }}$
mechanism	

4/Impedance	$z = \frac{Z_{in}}{Z_{in}} = \frac{\mu_r}{2}$
matching	$Z = Z_0 \sqrt{\varepsilon_r}$
5/Attenuation	$\alpha = \sqrt{\sqrt{\left(\varepsilon_r''\mu_r'' - \varepsilon_r'\mu_r'\right)^2 + \left(\varepsilon_r'\mu_r'' + \varepsilon_r''\mu_r'\right)^2} + \left(\varepsilon_r''\mu_r'' - \varepsilon_r'\mu_r'\right)}\frac{\sqrt{2}f\pi}{c}$
constant	
6/Debye relaxation	$\left(\varepsilon - \frac{\varepsilon_s + \varepsilon_{\infty}}{2}\right)^2 + (\varepsilon')^2 = \left(\frac{\varepsilon_s - \varepsilon_{\infty}}{2}\right)^2$
theory	

Table. S2. Definitions of the parameters employed to examine the achievements ¹⁻

10

Symbol:	Definition:	Symbol:	Definition:	Symbol:	Definition:
d	Thickness of	Z _{in}	Input impedance	c	Velocity of light
	absorber				in free space
α	Absorption	ν	Frequency	Т	Transmittance
	coefficient				
μ′	Real part of	t _m	Matching	μ″	Imaginary part of
	permeability		thickness		permeability
h	Planck constant	А	Absorbance	t	Thickness
Z ₀	Free space	n	Odd number	f	Frequency
	impedance				
ε′	Real part of	f_m	Matching	ε″	Imaginary part of

	permittivity		frequency		permittivity
€∞	Permittivity at the	ε ₀	Permittivity	ε _s	Static permittivity
	infinite frequency		constant		

References

- 1. S. Zhang, Q. Cao, M. Zhang and X. Shi, *Journal of Applied Physics*, 2013, **113**, 074903.
- 2. F. Qin and C. Brosseau, *Journal of applied physics*, 2012, **111**, 4.
- 3. X.-J. Zhang, G.-S. Wang, W.-Q. Cao, Y.-Z. Wei, J.-F. Liang, L. Guo and M.-S. Cao, ACS applied materials & interfaces, 2014, 6, 7471-7478.
- 4. D. Moitra, S. Dhole, B. K. Ghosh, M. Chandel, R. K. Jani, M. K. Patra, S. R. Vadera and N. N. Ghosh, *The Journal of Physical Chemistry C*, 2017, **121**, 21290-21304.
- 5. M. Du, Z. Yao, J. Zhou, P. Liu, T. Yao and R. Yao, *Synthetic Metals*, 2017, **223**, 49-57.
- 6. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi and J. He, *Journal of Alloys and Compounds*, 2018, **743**, 163-174.
- 7. M. Almasi-Kashi, M. H. Mokarian and S. Alikhanzadeh-Arani, *Journal of Alloys and Compounds*, 2018, **742**, 413-420.
- 8. P. J. Bora, I. Azeem, K. Vinoy, P. C. Ramamurthy and G. Madras, *Composites Part B: Engineering*, 2018, **132**, 188-196.
- 9. Y. Wang, X. Wu, W. Zhang, J. Li, C. Luo and Q. Wang, *Synthetic Metals*, 2017, **229**, 82-88.
- 10. W. B. Weir, *Proceedings of the IEEE*, 1974, **62**, 33-36.