Supporting Information

 $[Cs@C_{18}]^+$ and $[Na@C_{14}]^+$: perfect planar alkaline-metalcentered polyynic cyclo[n]carbon complexes with record coordination numbers

Min Zhang¹, Rui-Nan Yuan, Yan-Bo Wu, Qiang Chen (, J, Zhihong Wei

 (\boxtimes) , and Si-Dian Li $(\boxtimes)^*$

Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

Contents

Figure S1 Optimized global minimum structures of D_{9h} C₁₈ and D_{7h} C₁₄ at M06-2X level

Figure S2 Optimized global minimum structures of (a) $M \otimes C_{18}^+$ (M = Li, Na, K, Rb, Cs, and Fr)

and (b) $M \otimes C_{14}^+$ (M = Li, Na and K) at M06-2X level.

Figure S3 Relative energies of the low-lying isomers of $Cs \square C_{18}^+$.

Figure S4 Relative energies of the low-lying isomers of $Cs OC_{17}B$.

Figure S5 Relative energies of the low-lying isomers of $Cs \otimes C_{17}$.

Figure S6 Relative energies of the low-lying isomers of $Na C_{14}^+$.

Figure S7 Relative energies of the low-lying isomers of Na $OC_{13}B$.

Figure S8 Relative energies of the low-lying isomers of $Na@C_{13}$.

Figure S9 Simulated IR and Raman spectra of (a) D_{9h} Cs $\mathbb{C}C_{18}^+$ (1) and (b) D_{7h} Na $\mathbb{C}C_{14}^+$ (4) at M06-

2X/aug-cc-pvtz level.

Figure S10 Shape of the deformation densities $\Delta \rho_{(1)-(3)}$ are associated with the orbital interactions $\Delta E_{(1)-(3)}$ in Cs©C₁₈⁺ (1).

Figure S11 Shape of the deformation densities $\Delta \rho_{(1)-(3)}$ are associated with the orbital interactions $\Delta E_{(1)-(3)}$ in Na©C₁₄⁺ (4).

Figure S12 Delocalized in-plane σ MOs, in-plane π MOs, and out-of-plane π MOs of (a) D_{9h} Cs $\mathbb{C}C_{18}^+$ (1), (b) $C_{2\nu}$ Cs $\mathbb{C}C_{17}^-$ (3), and (c) D_{7h} Na $\mathbb{C}C_{14}^+$ (4).

Figure S13 AdNDP bonding analysis of $C_s \operatorname{Cs} \mathbb{C}_{17} B$ (2).

- **Table S1** Comparison of the calculated HOMO-LUMO gaps (ΔE_{gap}) and optimized bond lengths (r_{C-C} and $r_{C=C}$) of D_{9h} [Cs©C₁₈]⁺ (1) and D_{7h} [Na©C₁₄]⁺ (4) and their polyynic cyclo[n]carbon ligands D_{9h} C₁₈ and D_{7h} C₁₄.
- **Table S2** Comparison of EDA analyses of D_{9h} Cs $^{\odot}$ C₁₈⁺ (1) in two different schemes (Cs⁺ + C₁₈ and Cs + C₁₈⁺).
- **Table S3** Compositions from the C_{18} and Cs^+ to the $20e_1$ ', $19e_1$ ', $15a_1$ ' and $12e_1$ ' MOs of D_{3h} $Cs@C_{18}^+$.

Table S4 Compositions from the C₁₄ and Na⁺ to the 5e₂', 6e₁', 6a₁' and 4e₁' MOs of D_{7h} Na \mathbb{O} C₁₄⁺.

Table S5 Optimized coordinates (x, y, z) of D_{9h} Cs $\mathbb{C}C_{18}^+$ (1), C_s Cs $\mathbb{C}C_{17}$ B (2), $C_{2\nu}$ Cs $\mathbb{C}C_{17}^-$ (3), D_{7h}

 $Na@C_{14}^+$ (4), $C_s Na@C_{13}B$ (5), and $C_{2\nu} Na@C_{13}^-$ (6) at M06-2X/aug-cc-pvtz level.

Fig.S1 Optimized global minimum structures of D_{9h} C₁₈ and D_{7h} C₁₄ at M06-2X level.

Fig. S2 Optimized global minimum structures of (a) $M \odot C_{18}^+$ (M = Li, Na, K, Rb, Cs, and Fr) and (b) $M \odot C_{14}^+$ (M = Li, Na and K) at M06-2X level.

Fig. S3 Relative energies (in eV) of the low-lying isomers of $Cs @C_{18}^+$ at M06-2X and $\omega B97XD$ levels (parentheses).

Fig. S4 Relative energies (in eV) of the low-lying isomers of $Cs@C_{17}B$ at M06-2X and $\omega B97XD$ levels (parentheses).

Fig. S5 Relative energies (in eV) of the low-lying isomers of $Cs@C_{17}$ ⁻ at M06-2X and ω B97XD levels (parentheses).

Fig. S6 Relative energies (in eV) of the low-lying isomers of Na $^{\odot}C_{14}^+$ at M06-2X and

ωB97XD levels (parentheses).

Fig. S7 Relative energies (in eV) of the low-lying isomers of Na $\mathbb{C}C_{13}B$ at M06-2X and $\omega B97XD$ levels (parentheses).

Fig. S8 Relative energies (in eV) of the low-lying isomers of $Na@C_{13}^{-}$ at M06-2X level.

Fig. S9 Simulated IR, Raman, and UV-vis spectra (with 100 excited states included) of (a) $D_{9h} \operatorname{Cs} \mathbb{C}_{18}^+$ (1) and (b) $D_{7h} \operatorname{Na} \mathbb{C}_{14}^+$ (4) at M06-2X/aug-cc-pvtz level.

Fig. S10 Deformation densities $\Delta \rho_{(1)-(3)}$ Cs©C₁₈⁺ (1) associated with the orbital interactions $\Delta E_{(1)-(3)}$ tabulated in Table S2. Only one component of the orbital terms is shown. The color code of the charge flow is from red to blue.

Fig. S11 Deformation densities $\Delta \rho_{(1)-(3)}$ of Na©C₁₄⁺ (4) associated with the orbital interactions $\Delta E_{(1)-(3)}$ tabulated in Table S3. Only one component of the orbital terms is shown. The color code of the charge flow is red to blue.

Fig. S12 AdNDP bonding pattern of $C_s \text{ Cs} \otimes \text{C}_{17}\text{B}$ (2), with the occupation numbers indicated.

Fig. S13 The nine delocalized out-of-plane π MOs and nine delocalized in-plane σ MOs of D_{9h} Cs $\mathbb{C}C_{18}^+$ (1) (a) and seven delocalized out-of-plane π MOs and seven delocalized in-plane σ MOs of D_{7h} Na $\mathbb{C}C_{14}^+$ (4).

Table S1 Comparison of the calculated HOMO-LUMO gaps (ΔE_{gap}) and optimized bond lengths (r_{C-C} and $r_{C=C}$) of D_{9h} [Cs©C₁₈]⁺ (1) and D_{7h} [Na©C₁₄]⁺ (4) and their polyynic cyclo[n]carbon ligands D_{9h} C₁₈ and D_{7h} C₁₄.

	$\Delta E_{gap}/eV$	r _{c-c} /Å	r _{C≡C} /Å
$D_{9h} [Cs \mathbb{C}C_{18}]^+$	5.38	1.343	1.224
D _{9h} C ₁₈	5.31	1.345	1.226
D _{7h} [Na©C ₁₄]+	5.87	1.326	1.240

D _{7h} C ₁₄	5.77	1.324	1.237

Table S2 Comparison of EDA analyses of D_{9h} Cs $\mathbb{C}C_{18}^+$ (1) in two different schemes (Cs⁺ + C₁₈ and Cs + C₁₈⁺) at M06-2X/TZ2P-ZORA level. All energy values are in kcal mol⁻¹.

Energy terms	Interacting fragments		
	Cs ⁺ + C ₁₈	$Cs + C_{18}^{+}$	
$\Delta E_{\rm int}$	-15.22	-1102.48	
ΔE_{Pauli}	1.89	263.26	
ΔE_{elstat}	-3.16	-261.13	
$\Delta E_{ m orb}$	-13.95	-1104.61	

Table S3 Compositions from the C_{18} and Cs^+ to the $20e_1$ ', $19e_1$ ' and $15a_1$ ' MOs of D_{3h} $Cs @C_{18}^+$.

MOs	Compositions
20e ₁ '	98.05% (C ₁₈ 14e ₁ ') + 1.89% (Cs ⁺ 14e ₁ ')
19e ₁ '	96.61% (C ₁₈ 13e ₁ ') + 2.81% (Cs ⁺ 6e ₁ ') + 0.59% (10e ₁ ')
15a ₁ '	98.10% (C ₁₈ 8a ₁ ') + 0.85% (Cs ⁺ 8a ₁ ')

Table S4 Compositions from the C₁₄ and Na⁺ to the 5e₂', 6e₁' and 6a₁' MOs of D_{7h} Na $^{\odot}$ C₁₄⁺.

MOs	Compositions

5e ₂ '	98.28% (C ₁₄ 5e ₂ ') + 1.24% (Na ⁺ 1e ₂ ')
6e ₁ '	96.26% (C ₁₄ 3e ₁ ') + 3.42% (Na ⁺ 2e ₁ ')
6a ₁ '	96.27% (C ₁₄ 4a ₁ ') + 2.53% (Na ⁺ 3a ₁ ')

Table S5 Optimized coordinates (x, y, z) of D_{9h} Cs $^{\odot}$ C₁₈⁺ (1), C_s Cs $^{\odot}$ C₁₇B (2), $C_{2\nu}$ Cs $^{\odot}$ C₁₇⁻ (3), D_{7h} Na $^{\odot}$ C₁₄⁺ (4), $C_{2\nu}$ Na $^{\odot}$ C₁₃B (5), and $C_{2\nu}$ Na $^{\odot}$ C₁₃⁻ (6) at M06-2X level.

 $\mathsf{Cs} \mathbb{C} \mathsf{C}_{18}^+ \left(\mathbf{1} \right)$

С

С

С	-0.61185300	3.64473100	0.00000000
С	-1.87408200	3.18531800	0.00000000
С	-2.81149500	2.39873500	0.00000000
С	-3.48311200	1.23545800	0.00000000
С	-3.69560700	0.03034400	0.00000000
С	-3.46235600	-1.29248600	0.00000000
С	-0.67161800	-3.63419300	0.00000000
С	0.67161800	-3.63419300	0.00000000
С	0.61185300	3.64473100	0.00000000
С	1.87408200	3.18531800	0.00000000
С	2.81149500	2.39873500	0.00000000
С	3.48311200	1.23545800	0.00000000
С	3.69560700	0.03034400	0.00000000
С	3.46235600	-1.29248600	0.00000000
С	2.85050300	-2.35224600	0.00000000
С	1.82152500	-3.21566100	0.00000000
С	-2.85050300	-2.35224600	0.00000000
С	-1.82152500	-3.21566100	0.00000000
Cs	0.00000000	0.00000000	0.00000000
Cs©C ₁₇ B (2)			
С	-3.50078000	-1.29928000	0.00000000
С	-3.59256600	-0.05583100	0.00000000
С	-3.42944600	1.24615000	0.00000000
С	-2.71672900	2.27906400	0.00000000

-1.80615200

-0.59225300

0.00000000

0.00000000

3.20987100

3.57395600

С	3.03714500	2.30727600	0.00000000
С	3.50860200	1.16777200	0.00000000
С	-2.80903800	-2.42264800	0.00000000
С	-1.93335900	-3.30178500	0.00000000
С	-0.67555300	-3.71666500	0.00000000
С	0.55889300	-3.79050500	0.00000000
С	1.78574200	-3.28105700	0.00000000
С	2.75700700	-2.52017200	0.00000000
С	3.39799700	-1.35356200	0.00000000
С	3.68337000	-0.15532500	0.00000000
С	0.68968900	3.73847300	0.00000000
Cs	0.00000000	0.18013900	0.00000000
В	1.96491800	3.26759100	0.00000000

Cs©C₁₇⁻ (**3**)

С	0.00000000	2.81836000	2.10611200
С	0.00000000	3.32079700	0.95158400
С	0.00000000	3.51825400	-0.34047400
С	0.00000000	3.08066800	-1.52952600
С	0.00000000	2.38021500	-2.62250800
С	0.00000000	1.24043700	-3.19830700
С	0.00000000	0.00000000	-3.54429200
С	0.00000000	-1.24043700	-3.19830700
С	0.00000000	-2.38021500	-2.62250800
С	0.00000000	-3.08066800	-1.52952600
С	0.00000000	-3.51825400	-0.34047400
С	0.00000000	-3.32079700	0.95158400
С	0.00000000	-2.81836000	2.10611200
С	0.00000000	-1.81873400	2.95755500
С	0.00000000	-0.65764900	3.43295500
С	0.00000000	0.65764900	3.43295500
С	0.00000000	1.81873400	2.95755500
Cs	0.00000000	0.00000000	0.00321900

Na©C₁₄+ (**4**)

С	0.61977300	2.81465100	0.00000000
С	1.81416100	2.23946400	0.00000000
С	2.58700500	1.27034900	0.00000000
С	2.88199500	-0.02208500	0.00000000
С	2.60617000	-1.23055200	0.00000000

С	1.77962700	-2.26700400	0.00000000
С	-0.61977300	2.81465100	0.00000000
С	-1.81416100	2.23946400	0.00000000
С	-2.58700500	1.27034900	0.00000000
С	-2.88199500	-0.02208500	0.00000000
С	-2.60617000	-1.23055200	0.00000000
С	-1.77962700	-2.26700400	0.00000000
С	-0.66283600	-2.80482300	0.00000000
С	0.66283600	-2.80482300	0.00000000
Na	0.00000000	0.00000000	0.00000000

Na©C₁₃B (**5**)

С	0.00000000	1.36516500	2.71479300
С	0.00000000	2.21557500	1.78203200
С	0.00000000	2.84087900	0.63856100
С	0.00000000	2.71276000	-0.62285600
С	0.00000000	2.27396700	-1.83892300
С	0.00000000	1.21350200	-2.54939600
С	0.00000000	-1.36516500	2.71479300
С	0.00000000	-2.21557500	1.78203200
С	0.00000000	-2.84087900	0.63856100
С	0.00000000	-2.71276000	-0.62285600
С	0.00000000	-2.27396700	-1.83892300
С	0.00000000	-1.21350200	-2.54939600
С	0.00000000	0.00000000	-2.97103200
Na	0.00000000	0.00000000	0.11157800
В	0.00000000	0.00000000	3.02166000

$Na@C_{13}^{-}$ (6)

С	0.00000000	0.00000000	2.62603200
С	0.00000000	1.27381400	2.43815900
С	0.00000000	2.16824000	1.49434100
С	0.00000000	2.71777900	0.34364600
С	0.00000000	2.47868300	-0.94549100
С	0.00000000	1.81136300	-2.02100300
С	0.00000000	0.63103000	-2.60631900
С	0.00000000	-0.63103000	-2.60631900
С	0.00000000	-1.81136300	-2.02100300
С	0.00000000	-2.47868300	-0.94549100

С	0.00000000	-2.71777900	0.34364600
С	0.00000000	-2.16824000	1.49434100
С	0.00000000	-1.27381400	2.43815900
Na	0.00000000	0.00000000	-0.01783500