Piezo-photocatalytic Properties of BaTiO₃/CeO₂ Nanoparticles with Heterogeneous Structure Synthesized by Gel-assisted Hydrothermal Method

Xia Li^{1, a, b}, Hongjuan Zheng^{1, a, c}, Jingjin Liu^e, Hongcheng Li^{a, b}, Jing Wang^{a, c}, Kang Yan^{a, c}, Jingsong Liu^b, Feng Dang^d and Kongjun Zhu^{*, a, c}

^a State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

^b College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing

210016, P. R. China

^c College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

^d Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education) Shandong University, Jinan 250061, P. R. China

^e School of General Education, Wuchang University of Technology, Wuhan 430223, P. R. China

¹ Co-first author

* Corresponding author

E-mail: kjzhu@nuaa.edu.cn

Tel.: 86-25-84895982

Fax.: 86-25-84895759

Catalyst	Morphology	$\mathbf{E}_{\mathbf{g}}$	Amount of catalyst	Pollutant	Degration rate [Rate(%)-time]	Catalytic conditions	Ref.
BiOBr/BTO	Nanoplates ~ 380 nm		10 mg	MO [50 ml, 10 mg·L ⁻¹]	100% -30 min	Xe lamp [300 W] + ultrasonic [, 40 kHz]	[1]
BiVO4:I/BTO-Ag	Rice-like		20 mg	RhB [50 ml, 10 mg·L ⁻¹]	55% - 15 min	Xe lamp [300 W] + ultrasonic [150 W, 40 kHz]	[2]
BT/Ag ₂ O	Nanocubes ~70 nm	3.27 eV	20 mg	RhB [20 ml, 15 mg·L ⁻¹]	100%-1.5 h	Mercury lamp [30.4 mW·cm ⁻²] + ultrasonic [50 W, 27 kHz]	[3]
BT@TiO ₂	Nanowires > 2µm	3.19 eV	50 mg	RhB [100 ml, 30 mg·L ⁻¹]	99.5% -75 min	Xe lamp [300 W] + ultrasonic [120 W, 45 kHz]	[4]
(Ag-Ag ₂ S)/BaTiO ₃	Nanoparticles ~ 100 nm		50 mg	MO [50 ml, 0.01 mM]	90% - 30 min	Xe lamp [300 W] + ultrasonic [,]	[5]
1mAg-BaTiO ₃	Nanoparticles ~ 100 nm		50 mg	RhB [50 ml, 0.01mM]	83% - 75 min	Xe lamp [300 W] + ultrasonic [,]	[6]
BaTiO ₃ /TiO ₂	Nanofibers	3.13 eV	100 mg	RhB [,]	100% -60 min	Hg lamp [250 W] + ultrasonic [300 W, 40 kHz]	[7]
BTO/STO-10	Nanofibers	3.10 eV	100 mg	RhB [100 ml, 1 mg·L ⁻¹]	97.8% - 30 min	LED UV lamp [30 W] + ultrasonic [300 W, 40 kHz]	[8]
BT@C-0.001M	Nanoparticles $\sim 500 \text{ nm}$	3.16 eV	100 mg	RhB [100 ml, 10 mg/L]	100%-100 min	Xe lamp [300 W] + ultrasonic [120 W, 40 kHz]	[9]
BaTiO ₃ /CeO ₂ [Ti/Ce = 0.875:0.125]	Nanoparticles ~ 300nm	3.21 eV	100 mg	RhB [100 ml, 10 mg/L]	~70% -120min	Xe lamp [300 W] + ultrasonic [120 W, 40 kHz]	This work

Table S1 A comparison of some piezo-photocatalysts in applications of pollutant degradation.

Fig. S1 Schematic of BT_xCe_y nanoparticles synthesis route

Fig. S2 Device diagram of the Piezo-photocatalytic test

Fig. S3 XRD patterns (a), SEM images of BaTiO₃/CeO₂-3 before (b) and after (c) piezophotocatalytic cycles (3 times)

Fig. S4 EPR spectra of BT and BaTiO₃/CeO₂-3 nanoparticles

Fig. S5 Piezoelectric characterization of BT and BaTiO₃/CeO₂-3 by PFM. Piezoelectric response phase curve (pink color) and amplitude curve (cyan color) of BT (a) and BaTiO₃/CeO₂-3 (b) with voltage from +5 V to -5 V.

References

- X. Zhou, F. Yan, S. Wu, B. Shen, H. Zeng, J. Zhai, Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO₃ (X = Cl, Br, Cl_{0.166}Br_{0.834}) Piezoelectric Composites, Small. 16 (2020) 1–15.
 doi:10.1002/smll.202001573.
- X. Zhou, B. Shen, J. Zhai, N. Hedin, Reactive Oxygenated Species Generated on Iodide-Doped BiVO₄/BaTiO₃
 Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation, Adv.
 Funct. Mater. 31 (2021) 1–14. doi:10.1002/adfm.202009594.
- [3] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect, Nano Lett. 15 (2015) 2372–2379. doi:10.1021/nl504630j.
- [4] Q. Liu, D. Zhai, Z. Xiao, C. Tang, Q. Sun, C.R. Bowen, H. Luo, D. Zhang, Piezo-photoelectronic coupling effect of BaTiO₃@TiO₂ nanowires for highly concentrated dye degradation, Nano Energy. 92 (2022).
 doi:10.1016/j.nanoen.2021.106702.
- Y. Lei, S. Xu, M. Ding, L. Li, Q. Sun, Z.L. Wang, Enhanced Photocatalysis by Synergistic Piezotronic Effect and Exciton–Plasmon Interaction Based on (Ag-Ag₂S)/BaTiO₃ Heterostructures, Adv. Funct. Mater. 2005716 (2020)
 1–9. doi:10.1002/adfm.202005716.
- [6] S. Xu, Z. Liu, M. Zhang, L. Guo, Piezotronics enhanced photocatalytic activities of Ag-BaTiO₃ plasmonic photocatalysts, J. Alloys Compd. 801 (2019) 483–488. doi:10.1016/j.jallcom.2019.06.115.
- J. Wu, W. Wang, Y. Tian, C. Song, H. Qiu, H. Xue, Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO₃/TiO₂ nanofibers for degradation of organic pollutants, Nano Energy. 77 (2020) 105122. doi:10.1016/j.nanoen.2020.105122.
- [8] X. Liu, X. Shen, B. Sa, Y. Zhang, X. Li, H. Xue, Piezotronic-enhanced photocatalytic performance of heterostructured BaTiO₃/SrTiO₃ nanofibers, Nano Energy. 89 (2021) 1–9. doi:10.1016/j.nanoen.2021.106391.
- H. Zheng, X. Li, K. Zhu, P. Liang, M. Wu, Y. Rao, R. Jian, F. Shi, J. Wang, K. Yan, J. Liu, Semiconducting BaTiO₃@C core-shell structure for improving piezo-photocatalytic performance, Nano Energy. 93 (2022) 106831. doi:10.1016/j.nanoen.2021.106831.