Supporting Information

Simple fabrication of carbon quantum dots and activated carbon from waste wolfberry stems for detection and adsorption of copper ion

Yunjia Xu¹, Jingming Lan¹, Baoying Wang¹, Chunmiao Bo¹, Junjie Ou², Bolin Gong^{1*}

¹School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China ²State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China

*Corresponding author.

Email address: gongbolin@163.com (B. Gong)

Table of contents

Experiment details

Preparation of Cu ²⁺ chromogenic agent	S-2
Adsorption ability of wolfberry stem AC for metal ions	S-3
Measurement of quantum yield (QY)	S-4
Fluorescence quenching principle	S-4
Supporting figures	
Fig. S1 Nitrogen adsorption-desorption isotherms and pore size	S-6
distribution, XRD, and FTIR of AC-NaOH-4	
Fig. S2 (a) X-ray diffraction patterns of AC-NaOH-3 and AC-NaOH-4 (b) FT-IR of AC-NaOH-4	S-7
Fig. S3 SEM images of (a, c) AC-NaOH-3 and (b, d) AC-NaOH-4	S-8
Fig. S4 Fitting of Langmuir adsorption model, Freundlich model	S-9
to isothermal adsorption, pseudo-first-order, pseudo-second-order	
and internal diffusion adsorption model fitting to kinetic	
adsorption curves	
Supporting tables	
Table S1 Comparison of wolfberry stem-based AC with other	S-10
biomass-derived AC	
Table S2 Adsorption isotherm parameters of Cu ²⁺ on AC-NaOH-	S-11
3 and AC-NaOH-4 by Langmuir and Freundlich models	
Table S3 Kinetic parameters of Cu ²⁺ adsorption on AC-NaOH-3	S-12
and AC-NaOH-4 by pseudo-first-order and pseudo-second-order	
models	
Table S4 Correlation of adsorption capacity of AC on Cu ²⁺	S-13

Experiment details

Preparation of Cu²⁺ chromogenic agent

A mother solution of Cu^{2+} (1 mmol L⁻¹) was prepared by dissolving a certain amount of $CuSO_4$ H₂O in water for subsequent experiments. An aqueous solution of sodium diethyl dithiocarbamate (10 mg mL⁻¹) was prepared under dark conditions and labeled as a copper reagent, and a starch indicator, $NH_4Cl-NH_3 \cdot H_2O$ buffer solution (pH=9.25), was configured. Finally, the absorbance of 452 nm was measured to obtain the standard curve of Cu^{2+} in the range of 10-50 µmol L⁻¹.

Adsorption ability of wolfberry stem AC for metal ions

In order to study the adsorption characteristics of wolfberry stem AC on Cu²⁺, AC was added to the water sample containing Cu²⁺, the adsorbed after Cu²⁺ concentration was measured by UV spectrophotometer.

For isothermal adsorption experiments, AC (10 mg) was immersed in 200 mL of conical flasks containing different concentrations of Cu^{2+} concentrations (100-240 µmol L⁻¹). The conical flask was placed on a 250 rpm thermostatic shaker and shaken for 3 h. The adsorbed Cu^{2+} concentration was detected by UV spectrophotometer. The adsorption amount was calculated according to equation S(1)

$$Q_{\rm e} = V(C_0 - C_{\rm e})/m \qquad S(1)$$

where V (L) is the solution volume, C_0 and C_e (mg L⁻¹) are the initial and equilibrium metal ion concentrations in solution, m (g) is the mass of adsorbent.

The isothermal adsorption curves were plotted by the adsorption capacity of AC at different Cu^{2+} concentrations (Q_e) versus the initial concentration of Cu^{2+} solution (C_e) (as ordinate). The isothermal adsorption curves of Cu^{2+} were calculated used the Langmuir model equation S(2) and the Freundlich model equation S(3).

The Langmuir isotherm equation is given by the following:

$$C_e/Q_e = C_e/Q_{max} + 1/K_LQ_{max} \qquad S(2)$$
$$\ln Q_e = \ln K_f + 1/n \ln C_e \qquad S(3)$$

where Q_{max} (mg g⁻¹) is the maximum adsorption capacity, K_{f} (mg g⁻¹) and K_{L} (L mg⁻¹) are the Langmuir and Freundlich constants, and n is the adsorption strength.

In the kinetic adsorption experiments, AC (10 mg) was added to 200 mL (170 μ mol L⁻¹) of Cu²⁺ solution. The conical flask was placed on a thermostatic shaker (250 rpm). After shaking for 5, 10, 15, 30, 60, 90, 120, 150, 180 min, the postsorption concentration of Cu²⁺ was measured by UV spectrophotometer AC. Fitting was performed by using pseudo-first-order (equation S4) and pseudo-second-order

kinetic models (equation S5).

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \qquad S(4)$$

$$t/Q_{t} = 1/k_{2}Q_{e}^{2} + t/Q_{e}$$
 S(5)

where Q_t (mg g⁻¹) is adsorption capacity at a specific time, k_1 is the rate constant of the pseudo-first-order and t (min) is adsorption time.

The internal diffusion model considers that the adsorbate diffuses from the outer surface of the adsorbent and enters into the inner surface through the pores on the adsorbent particles. The rate of this step mainly depends on the adsorbate diffuses speed through the pore, which is shown in the equation S(6).

$$Q_{t} = K_{id} t^{1/2} \qquad S(6)$$

where K_{id} is the internal diffusion rate constant, mg g⁻¹·min^{1/2}.

If the relation between the Q_t and $t^{1/2}$ was in a straight line, there would be an internal diffusion process during the adsorption process.

Measurement of quantum yield (QY)

The relative QY of the CQDs can be calculated by equation S(7) as follow:

$$\Psi_{\rm x} = \Psi_{\rm s} \times (I_x A_s \eta_x^2) / (I_s A_x \eta_s^2) \qquad {\rm S}(7)$$

Where Ψ is the fluorescence QY, x and s represent the test substance and the reference compound, η is the refractive index (1.33 for aqueous solution, ethanol is 1.003), A is the absorbance at an excitation wavelength of 360 nm, I is the integrated fluorescence intensity under the fluorescence emission spectrum. To reduce the interference of the reabsorption effects, the absorbance at excitation 360 nm was controlled to 0.01-0.1.

Fluorescence quenching principle

The fluorescence quenching mechanisms are classified into static burst mechanism and dynamic burst mechanism to explain the fluorescence burst. The Stern-Volmer equation can be utilized as a basis for discrimination of quenching phenomenon of the CQDs fluorescence caused by Cu²⁺, as described the following:

$$F_0/F = 1 + K_{\rm SV}[C]$$
 S(8)

where F_0 and F are the fluorescence intensities of CQDs suspensions without and with Cu²⁺ ions at the optimal excitation wavelength of 360 nm, respectively, K_{SV} is the

Stern-Volmer burst constant, and [C] is the concentration of Cu²⁺.

The slope of this plot was K_{SV} =0.012782 nm⁻¹. For the dynamic quenching effect, K_{SV} is proportional to the fluorescence lifetime. For the dynamic burst effect, K_{SV} is proportional to fluorescence lifetime [1].

where K_q is the bimolecular quenching constant, the average fluorescence lifetime (τ_0) and K_{SV} value (0.013 nm⁻¹) of CQDs without the presence of Cu²⁺ (1.06 ns) were used. So the bimolecular burst constant (K_q) value was found to be 1.21×10^{11} M⁻¹s⁻¹, indicating that it was static quenching rather than dynamic quenching because the rate constant for dynamic quenching is generally considered to be less than 1.0×10^{10} M⁻¹s⁻¹ [2].

Fig. S1 (a) Nitrogen adsorption-desorption isotherms and, (b) pore size distribution

Fig. S2 (a) X-ray diffraction patterns of AC-NaOH-3 and AC-NaOH-4 (b) FT-IR of AC-NaOH-4

Fig. S3 SEM images of bare wolfberry stems (a, b) and (c, d) AC-NaOH-3, AC-NaOH-4

Fig. S4 Fitting of (a) Langmuir adsorption model, (b) Freundlich model to isothermal adsorption, (c) pseudo-first-order, (d) pseudo-second-order and (e) internal diffusion adsorption model fitting to kinetic adsorption curves

Fig. S5 Zeta potential (a) of CQDs alone, and CQDs with the addition of Cu²⁺ metal ions, and UV spectra(b) of CQDs alone, and after addition of Cu²⁺ ions.

	AC		
Activator	Temperat	$\mathbf{S}_{\mathrm{BET}}$	Ref.
	ure	$(m^2 \cdot g^{-1})$	
	(°C)		
Water	800	785	[21]
vapor			
КОН	900	1465	[22]
CO_2	900	2344	[23]
NaOH	600	3016	This work
	Activator Water vapor KOH CO ₂ NaOH	ACActivatorTemperat ure (°C)Water800 vapor KOHCO2900NaOH600	Activator Temperat ure (m ² ·g ⁻¹) S _{BET} (m ² ·g ⁻¹) Water 800 785 vapor 785 785 CO2 900 1465 CO2 900 2344 NaOH 600 3016

 Table S1 Comparison of wolfberry stem-based AC with other biomass-derived

 AC

 Table S2 Adsorption isotherm parameters of Cu²⁺ on AC-NaOH-3 and AC-NaOH-4

 by Langmuir and Freundlich models

Adsorbent	Langmuir model			Freundlich model		
	$K_{\rm L}$ (L·mg ⁻	$Q_{\rm M} ({\rm mg}{\cdot}{\rm g}{\cdot}{ m g}{ m c}$	R	$K_{\rm F}~({\rm mg}\cdot{\rm g}\cdot{\rm g}\cdot$	n	R
	¹)	¹)		1)		
NaOH (1:4)	0.056	72.99	0.988	10.06	2.23	0.566
NaOH (1:6)	0.076	96.89	0.993	17.34	2.49	0.797

Sample	pseudo-first-order		pseudo-second-order			In	ternal diffu	ision
	$K_1(\min^{-1})$	R_1	$Q_{\rm e}({\rm mg}\cdot{\rm g}^{-1})$	K_2 (g mg ⁻¹ min ⁻¹)	R_2	$k_{\rm id1}$	k _{id2}	k _{id3}
NaOH (1:4)	0.0383	0.566	51.54	6×10 ⁻⁴	0.999	1.52	1.11	-0.24
NaOH (1:6)	0.0719	0.754	60.24	4×10-4	0.999	4.32	0.056	-6.75

Table S3 Kinetic parameters of Cu²⁺ adsorption on AC-NaOH-3 and AC-NaOH-4 bypseudo-first-order and pseudo-second-order models

Precursor materials	Activator	Adsorpt ion equilibration time (min)	Adsorption capacity (mg g ⁻¹)	Ref.
Wheat	КОН	200	57.5	[32]
Straw				
Walnut	CO_2	40	32	[33]
Shell				
Pinewood	H_3PO_4	40	20	[29]
Wolfberry	NaOH	30	59	This
stems				work

Table S4 Correlation of adsorption capacity of AC on $\rm Cu^{2+}$

	Preadsorption	Adsorption	Adsorption
	concentration	concentration	capacity
	(mg L ⁻¹)	$(mg L^{-1})$	$(mg g^{-1})$
Cu ²⁺	12.8	0.068	63.66
Fe ³⁺	11.2	0.518	53.41
Cr^{6+}	10.4	0.518	49.41
K^+	7.8	2.822	24.89
Na ⁺	4.6	2.089	12.55
Ca^{2+}	4	2.799	6.00

Table S5 Actual water sample adsorption (AC=10 mg V=50 mL)

Reference

[1] G.K. Hu, L. Ge, Y.Y. Li, M. Mukhtar, B. Shen, D.S. Yang, J.G. Li, Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid, Journal of Colloid and Interface Science, 579 (2020) 96-108.

[2] S.Y. Tang, D. Chen, G.Q. Guo, X.M. Li, C.X. Wang, T.T. Li, G. Wang, A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag⁺, Science of the Total Environment, 825 (2022).